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Abstract. In code-based cryptography, dual attacks to solve the decod-
ing problem have recently been improved. They are now competitive and
beat information set decoders for a significant regime. These recent dual
attacks, starting from Carrier et al. (Asiacrypt 2022), work by reduc-
ing decoding to an LPN problem where the secret and the noise involve
parts of the error vector coming from the decoding problem. However,
their analysis relies on some heuristics. While in the original Asiacrypt
2022 work, an LPN modeling was used to carry out the analysis, Meyer-
Hilfiger and Tillich (TCC 2023) showed that this assumption could not
be used. As a result, this TCC paper analyzed this attack with a new
technique based on Fourier theory and on modeling the weight enumera-
tor of a random linear code as a Poisson variable. The analysis the newest
and most efficient dual attack, doubleRLPN, introduced by Carrier et al.
(Eurocrypt 2024) also relies on this technique and on this model.
Our main contribution is to devise a variant of doubleRLPN that we
can fully prove without using any model. We show that our variant has
the same performance, up to polynomial factors, as doubleRLPN. The
final algorithm and its analysis are also simpler. Our technique involves
flipping the coordinates of the noisy codeword and observing the fine
changes in the amount of noise of the related LPN problem to reconstruct
the entire error. The analysis is based on the second-order behavior of
the bias of the noise which was already used in the original analysis.
Secondly, the performance of our algorithm, as was the case for dou-
bleRLPN, heavily depends on having access to a good code along with
an efficient decoder. We instantiate this code by choosing a Cartesian
product of a constant (instead of sublinear in the original proposal) num-
ber of random linear codes. We use a decoder based on blockwise error
enumeration which was already used by Guo et al. (Asiacrypt 2014). We
show that our approach is optimal up to polynomial (instead of super-
polynomial) factors.

Note: preliminary version not ready for diffusion.



1 Introduction

The security of code-based schemes relies on the hardness of the decoding prob-
lem. We focus here on the binary variant of this problem.

Definition 1.1 (Binary Decoding problem). Let C be a binary linear code
of dimension k and length n, i.e. a linear subspace of dimension k of Fn

2 . Given C
and a noisy codeword y = c+ e where c ∈ C and e has Hamming weight |e| = t,
the goal is to find an error e′ of weight t such that y − e ∈ C.

For the right choice of parameters n, k, t the algorithms solving this problem are

exponential in t. In particular, when the rate of the code R
def
= k/n is constant

and the relative decoding weight τ = t/n is a well-chosen constant, the runtime
of all algorithms is of the order 2α(R,τ)n where the constant α(R, τ) depends on
the algorithm.

The two main families of algorithms solving this problem are, on the one
hand, Information set Decoders (ISD) and, on the other hand, Dual attacks. The
ISDs are essentially improvements of Prange’s algorithm from 1962 [Pra62]. They
are the most widely studied decoders and have benefited from many improve-
ments over the years : [Ste88, Dum89, MMT11, BJMM12, MO15, BM18] to cite
a few. Dual attacks, on the contrary, can be seen as improvements of Al-Jabri’s
statistical decoding algorithm from 2001 [Jab01]. However, this decoder was for-
gotten for a long time as it was shown to be uncompetitive to attack McEliece
cryptosystem [Ove06] and asymptotically uncompetitive [DT17] against Prange
decoder, the simplest of the ISDs. Recently, however, new dual attacks have been
developed [CDMT22, MT23, CDMT24] which are now competitive and even
outperform the ISD’s for some significant regimes. More precisely, the best dual
attack [CDMT24] asymptotically outperforms the best ISD [BM18] in terms

of time complexity when decoding codes of constant rate R
def
= k/n that are

smaller than 0.42 and when the relative error weight of the decoding problem is
the relative Gilbert-Varshamov distance, namely when t/n = h2 (1−R) where
h2 (x) = −x log2(x)− (1− x) log2(1− x) is the binary entropy function. This is
the distance where the problem is the hardest and represents the distance where
we expect a unique non-planted solution to the decoding problem.

1.1 Dual attacks.

The main ingredient for dual attacks is the dual code, defined as C⊥ def
= {h ∈

Fn
2 : ⟨h, c⟩ = 0∀c ∈ C } where ⟨h, c⟩ =

∑n
i=0 hici ∈ F2 and where hi ∈ Fn

2 is the
i’th coordinate of h. To decode, dual attacks leverage the fact that, for a dual
vector h ∈ C⊥, the inner product between h and the noisy codeword y = c+ e,

⟨y,h⟩ = ⟨c+ e,h⟩ = ⟨e,h⟩

is more biased toward 0 as the Hamming weight of e and h, namely |e| and |h|,
are low.
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1.2 Modern dual attacks.

The most recent dual attacks [CDMT22, MT23, CDMT24] essentially reduce
decoding to an LPN problem which is then solved with standard solvers.

LPN problem. In essence, an LPN problem is a problem where given access to an
oracle which upon each call returns (a, ⟨a, s⟩+ e) ∈ Fs

2×F2 where a is uniformly
random in Fs

2 and the noise e is taken as a Bernoulli of a fixed parameter 1−ε
2

and s is a fixed secret and the goal is to recover the secret s with as many calls
to the oracle as wanted.

Reducing decoding to LPN. The reduction presented in [CDMT22] works as
follows : by splitting the support J1, nK in two complementary parts P and
N and by computing a dual vector of low weight on the part N , we get the
following LPN sample

⟨y,h⟩ = ⟨a, s⟩+ e where


s = eP

a = hP

e = ⟨eN ,hN ⟩

where eP is the secret.

Strategy to recover the secret. The algorithm RLPN presented in [CDMT22]
essentially computes many such dual vectors, each yielding an LPN sample, and
tries to recover the secret eP with an LPN solver. Very roughly the LPN solver

returns the x ∈ F|P|
2 such that ⟨y,h⟩ − ⟨x,hP⟩ is the most biased toward 0.

Denoting by H the set of computed dual vectors, this was done in RLPN by

computing exhaustively for all x ∈ F|P|
2 a score function encoding this bias

FH ,y (x)
def
=
∑
h∈H

(−1)⟨y,h⟩−⟨x,hP⟩.

The algorithm then considers the x’s such that the score is big enough. One can
show that when x = eP this score is expected to be big while when x ̸= eP

this score is roughly expected to be 0.

Estimating the bias of the noise. A key quantity underlying the hardness
of recovering the secret eP is the bias of the noise of the LPN sample where the
bias of a Bernoulli variable X is defined as

bias (X) = P (X = 0)− P (X = 1) .

Say, for the sake of the discussion, that h is taken uniformly at random in
{ h ∈ C⊥ : |hN | = w}. To estimate the bias of the noise, bias (⟨eN ,hN ⟩),
it was previously assumed in [Jab01, Ove06, DT17] and rigorously showed by
[CDMT22] that it could reasonably be approximated by the bias when forgetting
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the code structure, namely by the bias of ⟨eN ,h′
N ⟩ where h′

N is taken uniformly
at random in the Hamming sphere of weight w (and not in its intersection with
the dual code). This is very convenient as the later bias can be expressed as a
closed-form function depending only on the weight and length of the vectors.
For that purpose let us define

δ(|N |)
w (|eN |)

def
= bias (⟨eN ,h′

N ⟩) . (1)

which is a function of |N |, the length of the vectors, and w, the weight of h′
N ,

and |eN |, the weight of eN (suppose without loss of generality that this last
weight is known and assumed for example to be of typical weight). This function
has a simple closed form expression involving Krawtchouk polynomials. When
the context is clear we forget the dependencies and denote it more simply by

δ
def
= δ(|N |)

w (|eN |)

.

High level rationale of the analysis and the ideal LPN model. The
key question behind the analysis of dual attacks is the number of LPN samples
required in order the make the right decision above, i.e. to be able to recover
the secret of our LPN sample with good probability. Generally, given N LPN
samples coming from a standard LPN oracle, i.e. where each sample (⟨a, s⟩+ e)

are drawn independently and where a is drawn uniformly in F|P|
2 and e is drawn

as a Bernoulli variable of bias ε = bias (e), where the bias is defined as

bias (e)
def
= P (e = 0)− P (e = 1)

then, Shannon’s first theorem states essentially that it is sufficient that N > 1/ε2

to be able to recover the secret s with good probability. This secret can be
recovered by maximizing the associated score function. Of course the samples
we get are not distributed as standard LPN samples but to make the analysis
tractable [CDMT22] made an LPN modelling that the distributions of the LPN
samples obtained in the algorithm are that of standard LPN samples.

The LPN modelling along with the estimation of the bias yielded the sim-
ple condition that if N > 1/δ2 then the RLPN algorithm should be able to
recover eP by maximizing the score function, i.e. by outputting x such that
x = argmaxx FH ,y (x). Some experimental discrepancy were noticed but they
were conjectured to be not problematic asymptotically.

Technical difficulties : the rise of the Poisson model. However, as it was
shown shortly after by [MT23] this LPN modelling really could not be used.
This comes from the fact that the hN intervening in the noise shared a lot
of intersection of their support and that hP and hN are linearly related. As
a result, there exists some x ̸= eP such that their associated score function is
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bigger than that associated to the secret eP , even if the condition that N > 1/δ2

is met. This critically means that eP cannot be recovered by maximizing the
score function as it was believed before.

To contravene this [MT23] proposed a corrected variant of RLPN. The idea
was, instead of returning the vector maximizing the score function, to rather
consider a rather small set of potential candidates for eP . A vector x would be
considered as candidate for eP if its associated score, FH ,y (x) was big enough,
superior to a well-chosen threshold. The algorithm would then test each of those
candidates x for eP by solving a smaller decoding problem. This decoding prob-
lem would return the whole error e when x = eP and fail else. In particular, and
importantly, testing a candidate is exponentially costly, thus a key part of the
analysis was now to precisely estimate their number. This all boils down to un-
derstanding the tail distribution of the score function : given some x what is the
probability that FH ,y (x) is superior to the threshold that was chosen? Interest-
ingly, the second-order behavior of this score function is known from [CDMT22].

In essence, it is shown there that if N
def
= |H |, the number of distinct dual vector

drawn, is such that N > n/δ2 then with probability 1− o(1),

FH ,y (eP) = Nδ + o(Nδ). (2)

We call this a second-order bound because it is derived by computing the ex-
pected value and variance of the score function and applying the Bienaymé-
Tchebychev inequality to conclude. In fact, a similar bound could be derived for
any fixed x ̸= eP to show that under the same condition and probability we
have

FH ,y (x) = 0 + o(Nδ).

Basically, both these bounds allows to show that, as long as N > n/δ2, eP

can be distinguished with probability 1 − o(1) from x ̸= eP . Problematically
these bounds are completely insufficient for the purpose of [MT23]. Indeed, the
optimal parameters of this algorithm are such that |P| = Ω (n) and as a result

the space in which x ∈ F|P|
2 leaves is exponentially big, thus one would need

exponential bounds, i.e. bounds that holds with probability 1− 2−Ω(n) in order
to say anything non-trivial about the size of the set of candidates. Sadly, [MT23]
had to rely on some assumptions to obtain such exponential bound. Their tech-
nique relied on using the Poisson summation formula on the score function along
with the model that when C + z is a random coset of a random linear code of
length n and dimension k then the number of codewords of weight i can be mod-
eled as a Poisson variable of right expected value,

(
n
i

)
/2n−k. This was verified

experimentally.
Under such model, and equipped with this bound, they were able to show

that the number of false candidate was polynomial and that consequently the
cost of checking the candidates was completely dominated by the other costs of
the algorithm (say by the part where we compute the dual vectors). All in all this
showed that even though the LPNmodel was not valid, the overall additional cost
incurred by this structure was of polynomial nature. Later, [CDMT24] improved
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this RLPN algorithm by using an additional reduction from sparse LPN to plain
LPN and its analysis relied on a similar estimation of a number of candidates.
This estimation relied on a similar Poisson model and it was showed that for
the parameters of interest in the article this number was exponential. However,
again, it was sufficiently low so that the cost of checking these candidates never
dominated the complexity of the other steps of the algorithm.

1.3 Contributions

– Our main contribution is to devise a variant of double-RLPN that we can
fully prove without using any model whatsoever up to rate R ⩽ 0.5. We
show that our variant has the same performance, up to polynomial factors,
as the original double-RLPN algorithm. In practice our result holds for higher
rates but then depends on the parameters of the algorithm but in any cases,
R ⩽ 0.5 already encompasses the rate regime where the best dual attacks is
currently known to beat the best ISD’s.

– Secondly, as we will recall later, the performance of our algorithm, as it was
the case for the doubleRLPN, heavily depends on having access to a good
code along with an efficient decoder. We instantiate this code by choosing
cartesian product of a constant (instead of sublinear in the original proposal
of [CDMT24]) number of random linear codes. We use a syndrome decoder
based on blockwise error enumeration that was already used in [GJL14].
We show overall that our algorithm, when using this code, looses only a
polynomial factor (instead of superpolynomial) compared to the ideal case
where we would suppose that we have access to a random linear code that
we could decode efficiently.

1.4 Our technique

We give the idea of our provable variant. Our goal here is to make a variant whose
proof relies only on the tractable second-order bounds on the score function given
previously. We focus here on giving the idea of a fully provable variant of RLPN
only, the fully provable variant of double-RLPN will follow a similar rationale.

On a very high level our method is as follows : instead of computing one LPN
problem and an associated score function, we compute |N | + 1 LPN problems

and associated score function. This will allow us to make for each x ∈ F|P|
2 a

guess g (x) for the value of eN , in polynomial time. The two crucial point will
be that i) a guess can be tested in polynomial and ii) we can show that on the
secret x = eP the guess is valid, namely g (eP) = eN with good probability.

Base observation. Our base observation is that we can change the amount
of noise of the LPN samples by flipping the coordinates of the received noisy
codeword y that intervene in the noise of the LPN samples. More precisely, by
computing

y(i) such that
(
y(i)
)

P
= yP and

(
y(i)
)

N
= yN + ξi
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one can readily see that for a dual vector h ∈ C of low weight on N we have
the ”flipped” LPN sample〈

y(i),h
〉
= ⟨eP ,hN ⟩+ ⟨eN + ξi,hN ⟩

which is more or less noisy depending on the weight of eN +ξi. Said differently, if
(eN )i = 1 then the weight of eN +ξi increases and thus the ”flipped” score func-
tion evaluated on the secret eP , namely FH ,y(i) (eP) =

∑
h∈H (−1)⟨eN +ξi,hN ⟩,

is expected to increase.

Observation 1.1.

If (eN )i = 1 we expect that FH ,y(i) (eP) > FH ,y (eP) .

The algorithm. On a high level our idea is as follows : instead of computing
one score function FH ,y, we will also compute the flipped scores FH ,y(i) for
i ∈ J1, |N |K. Computing these additional scores allows us to make for each

x ∈ F|P|
2 a guess g (x) for the value of eN , in polynomial time. This guess is

given as follows:

g (x)i ← 1 If FH ,y(i) (x) > FH ,y (x) .

Following Observation 1.1 it is readily seen that when x = eP we expect that
the guess is right, namely that g (x) = eN . Now, the key remark we use is
that in any cases, we can test a guess in polynomial time by checking that x
concatenated with the associated guess g(x) is a solution to the original decoding
problem (by making sure it is of weight t and that, when we remove y the result

is in C). As such our algorithm simply go through all x ∈ F|P|
2 , make a guess

and check this guess.

Proving our algorithm. Proving our algorithm only relies on proving that
when x = eP then the guess is good with high probability. It is clear here
that the second order concentration bounds given in Eq. (2) are sufficient to
prove this. Indeed, for each position i we compare only two distributions, the
one related to eNi

being 0 and the one for eNi
being 1. Of course, we must apply

these bounds for each i ∈ J1, nK, but this only incurs a polynomial loss compared
to stronger bounds. We make no claim whatsoever regarding the other cases
corresponding to x ̸= eP as they will be naturally discarded by our checking
phase.

Our variant has the same performance as the original algorithm. Last,
we argue that in fact our algorithm have the same performance, up to polynomial
factors, than the original algorithm. One could argue that we have somehow
lost in performance since the distribution we are trying to distinguish now are
closer than the original distributions in double-RLPN. This is essentially not the
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case. In RLPN the distributions being distinguished had either expected value
E (FH ,y (eP)) = Nδ or expected value E (FH ,y (x)) = 0 when x ̸= eP . In
our provable variant the distribution that we compare distributions that have
expected values respectively

E (FH ,y (eP)) = Nδ with δ
def
= δ(|N |)

w (u)

E
(
FH ,y(i) (eP)

)
= Nδ′ with δ′

def
= δ(|N |)

w

(
u+ (−1)(eN )i

)
and where we recall that δ() () was defined in Eq. (1). The key point is that
we can show that in our regime of interest (i.e. in the non-oscillatory regime of
Krawtchouk polynomials) then δ′ − δ is polynomially relatable to δ, namely we
can show that

δ′ − δ ⩾
1

poly (n)
δ.

This shows that our algorithm solves the decoding problem under a mild poly-
nomial strengthening of the original condition, namely it requires that N >
poly (n) /δ2.
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3 Notation and Preliminaries

3.1 Notation

Set, vector and matrix notation. The set [a, b] is closed set of reals between
a and b. Ja, bK indicates the closed integer interval between a and b. F2 is the
binary field. |E| is the cardinality of a finite set E. Vectors are indicated by
lowercase bold letters x and matrices by uppercase bold letters A. For a vector
x = (xi)1⩽i⩽n and I ⊂ J1, nK, xI is given by xI = (xi)i∈I and x⊺ is the
transpose of x and |x| stands for the Hamming weight of x. Given two vectors
x ∈ Fn

2 and y ∈ Fn
2 , their canonical inner product in F2 is denoted by ⟨x,y⟩ =∑n

i=1 xiyi. We denote by (x || y) ∈ F2n
2 the concatenation of x and y. For a

matrix A ∈ Fk×n
2 and I ⊂ J1, nK, AI is the matrix A where we kept only the

columns whose indices are in I . rank (A) is the rank of A. In is the identity
matrix with n rows and columns. 0k×n ∈ Fk×n

2 is the all zero matrix. 0n ∈ Fn
2

is the null vector. Snw
def
= {x ∈ Fn

2 : |x| = w} is the Hamming sphere of weight
w of Fn

2 . 1A is the indicator function of the set A, namely 1A (x) = 1 if x ∈ A
otherwise 0.
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Probability. We denote respectively by E (X) and Var (X) the expected value
and variance of a random variable X. We will use Bienaymé–Chebyshev inequal-
ity given as follows.

Proposition 3.1 (Bienaymé–Chebyshev inequality). For any random vari-
able X and any α > 0 we have

P (|X − E (X)| > α) ⩽
Var (X)

α2
.

We will also use the union bound.

Proposition 3.2 (Union bound). Given N event (Ei)i∈J1, NK we have that

P
(⋃N

i=1 Ei

)
⩽
∑n

i=1 P (Ei).

When D is a probability distribution we write that X ∼ D to specify that X is
distributed according to D. If A is a set, we denote by U (A) the uniform distri-
bution over A. We denote by Ber (p) is the Bernouilli distribution of parameter
p. By definition if X ∼ Ber (p) then X take value in F2 and P (X = 1) = p. We
define the bias of a binary random variable X as

bias (X)
def
= P (X = 0)− P (X = 1) .

In particular if X ∼ Ber
(
1−ε
2

)
then bias (X) = ε.

Lemma 3.3 (Pilling up lemma). If X1 ∼ Ber
(
1−ε1
2

)
and X2 ∼ Ber

(
1−ε2
2

)
then bias (X1 +X2) = ε1ε2.

Fourier Transform. Let f : Fn
2 → R be a function. We define its Fourier

transform f̂ : Fn
2 → R as

f̂ (x) =
∑
a∈Fn

2

f(a)(−1)⟨x,a⟩ ∀x ∈ Fn
2 .

We call any algorithm computing this Fourier transform in time O(n2n) a Fast
Fourier transform.

Landau and asymptotic notation. For real valued functions defined over R
or N we define o(), O(), Ω (), Θ (), in the usual way. We write that f = ω(g)

when f dominates g asymptotically that is when lim
x→∞

|f(x)|
g(x) = ∞. We use the

less common notation Õ(), where f = Õ(g) means that f(x) = O
(
xkg(x)

)
for

some constant k.
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3.2 Linear codes and decoding problem

Definition 3.4 (Binary linear code). A binary linear code C of length n and
dimension k is a linear subspace of Fn

2 of dimension k. We say that C is an [n, k]
linear code.

We call R = k
n the rate of the code. We denote by dim (C) the dimension of

C as a linear space. We say that G ∈ Fk×n
2 is a generator matrix of C if C =

{mG : m ∈ Fk
2} and that H ∈ F(n−k)×n

2 is a parity-check matrix of C if
C = {c ∈ Fn

2 : Hc⊺ = 0}.

Definition 3.5 (Dual code). For any binary linear code C of length we denote

the dual code by C⊥ def
= {h ∈ Fn

2 : ⟨c,h⟩ = 0, ∀c ∈ C}.

We have that if C is an [n, k]-linear code then C⊥ is an [n, n − k]-linear code
and that if G is a generator matrix of C then G is a parity-check matrix of C⊥.
We will denote by CI the punctured code obtained from C by keeping only the
positions in I, i.e. :

CI = {cI : c ∈ C}.

Two of the most standard distributions on linear codes are given as follows.

Definition 3.6 (Distribution on linear codes). We denote by UG (n, k)
the distribution on linear codes obtained by taking a generator matrix of the code
uniformly at random in Fk×n

2 . We denote by UH (n, k) the distribution on linear
codes obtained by taking a parity-check matrix of the code uniformly at random

in F(n−k)×n
2 .

In this work we will focus on designing an algorithm solving the following
average binary decoding problem.

Definition 3.7 (Binary Decoding problem DPG (n, k, t)). Given (G,y)
where G is a matrix taken uniformly at random in Fk×n

2 and y = mG + e
where m is taken uniformly at random in Fk

2 and e is taken uniformly at ran-
dom among vectors of Fn

2 of Hamming weight t, the goal is to output an error
vector e′ of Hamming weight t such that y.

The so called Gilbert-Varshamov distance is an importance quantity which rep-
resents essentially the decoding distance where we expect a unique non-planted
solution to the decoding problem.

Definition 3.8 (Gilbert-Varshamov distance). Let n, k ∈ N be such that
k ⩽ n. We define the Gilbert-Varshamov distance dGV (n, k) as the largest inte-
ger such that

dGV(n, k)∑
i=0

(
n

i

)
⩽ 2n−k.

The above could be proved using some slight variant of the following standard
lemma.
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Lemma 3.9 (Probability of belonging to a code). Let C ∼ UH (n, k) and
let c ∈ Fn

2 \ { 0} be a fixed vector. We have that

P (c ∈ C) = 1

2n−k
.

If furthermore d ∈ Fn
2 \ { 0} is a fixed vector such that d ̸= c we have that

P (c ∈ C,d ∈ C) ⩽
(

1

2n−k

)2

.

3.3 Krawtchouk polynomial

We recall here some properties about Krawtchouk polynomial that will be useful
in the article.

Definition 3.10. (Krawtchouk polynomial) We define the Krawtchouk polyno-

mial K
(n)
w of degree w and of order n as K

(n)
w (X)

def
=
∑w

j=0 (−1)
j (X

j

)(
n−X
w−j

)
.

The following fact is well known, it gives an alternate expression of the Krawtchouk
polynomial (see for instance [vL99, Lemma 5.3.1]) :

Lemma 3.11. For any a ∈ Fn
2 ,

K(n)
w (|x|) = 1̂Sn

t
(x) =

∑
y∈Fn

2 :|y=w

(−1)⟨x,y⟩ . (3)

Equipped with this lemma it is easy to see that Krawtchouk polynomials are
related to the bias of the inner product of two random binary vectors.

Lemma 3.12 (Bias of an inner product). Let e ∈ Snt be a fixed vector and
let h be taken uniformly at random in Snw. We have that

bias (⟨e,h⟩) = δ(n)w (t)

where

δ(n)w (t)
def
= K(n)

w (t) /

(
n

w

)

3.4 Asymptotic expansion

To simplify our proofs we will often use the following standard asymptotic ex-
pansion of the binomial coefficient.

Proposition 3.13. There exists a positive poly-bounded function f such that
for any n, t ∈ N such that t ⩽ n we have

1

f(n)
2h(t/n)n ⩽

(
n

t

)
⩽ f(n)2h(t/n)n

where h (x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy function.
Furthermore, the binary entropy function is differentiable in ]0, 1[.
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We will also use this standard result about the asymptotic expansion of Krawtchouk
polynomials.

Proposition 3.14 (About the asymptotic expansion of Krawtchouk poly-

nomials). Let us define A
def
= { (ω, τ) ∈ [0, 1]2 : τ < 1/2−

√
ω(1− ω)}. There

exists a positive poly-bounded function f and a bivariate function κ (ω, τ) that is

differentiable on A and that is such that for any w, t, n such that t < Root
(
K

(n)
w

)
we have

1

f(n)
2κ(w/n, t/n)n < K(n)

w (t) < f(n)2κ(w/n, t/n)n.

where the delimitation of the root region is defined as

Root
(
K(n)

w

)
def
= n/2−

√
w(n− w) (4)

Proof. This is a direct corollary of [KS21, Section 2.2, point 6.] together with
[KS21, Section 2.1.2].

4 Essential on the reduction of double-RLPN

Our provable variant of double-RLPN reuses a major part of the original double-
RLPN algorithm [CDMT24]. Recall that our goal here is to solve the following
decoding problem, namely, given an [n, k]-linear code C and a noisy codeword
y = c+ e where c ∈ C and e ∈ Snt , the goal is to recover e.

We recall here the 4 steps of the dual attack double-RLPN to solve this prob-
lem.

1. Choose at random P and N two complementary subsets of J1, nK
2. Compute a list of LPN samples where the secret is related to eP .
3. Compute a score function associated to the LPN samples that encodes how

likely a vector is the secret of the LPN samples.
4. Somehow recover eP using the values of the score function then recover the

rest of the error eN .

Those steps are iterated as certain numberNiter of times until a bet on the weight
of the error on the part P and N is verified, say |eN | = u. The rationale of
step 4. is that it succeed in recovering e when this bet is verified, else it fails.

We discuss in detail of step 2. and step 3. in Section 4.1 and Section 4.2
respectively. These steps represent the core of double-RLPN and will be used by
our provable variant. We discuss quickly of step 4. as well as the original analysis
of double-RLPN to recall the key quantities that will also appear in our analysis.

4.1 Computing a list of LPN samples

In this section we suppose that two complementary subsets P and N of J1, nK
such that

|P| = s, and |N | = n− s.

are given and explain how double-RLPN computes some LPN samples whose
secret is related to eP .

12



The reduction of [CDMT24]. The reduction starts from the base remark
from [CDMT22] that a dual vectors h of small weight on N , directly yield an
LPN sample

⟨y,h⟩ = ⟨c+ e,h⟩ = ⟨eP ,hP⟩+ ⟨eN ,hN ⟩ .

Then, [CDMT24] further noticed that the dimension of the LPN samples could
be reduced using a technique from [GJL14], at the cost of a mild increase of noise
by using the sparsity of the secret eP . The reduction works by considering an
[s, kaux]-linear auxiliary code Caux and decoding hP onto Caux, i.e. , by finding
caux ∈ Caux and an error eaux of low weight taux such that

hP = caux + eaux |eaux| = taux.

Now consideringGaux ∈ Fkaux×s
2 a generator matrix of Caux, there exists a unique

maux ∈ Fkaux
2 such that caux = mauxGaux. This allows to get the following LPN

sample (maux, ⟨y,h⟩) where

⟨y,h⟩ = ⟨a, s⟩+ e where


s = ePG⊺

aux ∈ Fkaux
2

a = maux

e = ⟨eaux, eP⟩+ ⟨eN ,hN ⟩ .
(5)

Definition 4.1 (List of LPN samples from a list of decoded dual vec-
tors.). Given a set of decoded dual vectors H ⊂ { (h, eaux) ∈ C⊥ × Sstaux :
hP + eaux ∈ Caux} and Gaux a generator matrix of an [s, kaux]-linear code Caux
and a word y ∈ Fn

2 we define the list of LPN samples as

L (H , y, Gaux, P)
def
= (maux, ⟨y,h⟩)(h,eaux)∈H

where for each (h, eaux) ∈H , the associated maux is the unique vector of Fkaux
2

such that mauxGaux + eaux = hP .

Note that L (H , Gaux, y) can be computed with standard linear algebra in
time and memory poly (n) |H |. The rest of Section 4.1 is dedicated to recalling
precisely how the set of decoded dual vectors is computed.

About the computation of low weight dual vectors We recall here the
standard fact that computing a vector h ∈ C⊥ of small weight on N reduces to
computing a vector of weight w of

(
C⊥
)
N

and lifting it uniquely onto C⊥.

Definition 4.2 (Information set and lifting). A subset I of J1, nK is an
information set of a linear code D if for any x ∈ DI there exists a unique
codeword d ∈ D such that dI = x. We define

Lift (D, I , x)
def
= d where d is the unique d ∈ D such that dI = x.

We call it the lift of x into D.

13



This is possible only if N if an information set of C⊥, which is the case with

high probability since the condition that |N | def= n − s > n − k are naturally
verified by the double-RLPN parameters. Checking if N is an information set of
C⊥ can be done in polynomial time by checking that rank (GP) = |P| where
G is a generator matrix of C. Lifting hN ∈

(
C⊥
)
N

can be done in polynomial
time with a gaussian elimination to find a generator matrix G′ of C of the form

G′ =

[
Is R

0s×s A

]
and by defining hP ← hN R⊺.

With these reductions presented We describe next two algorithms: the first
creates couples (h, eaux) of decoded dual vectors and second transforms these
couples into the samples (maux, ⟨y,h⟩).

The procedure computing the decoded dual vectors. The procedure
computing the LPN samples starts by calling a procedure Decoded-dual-
vectors(C,P, N , F) that we describe here. F is the family of [s, kaux]-linear
code that will be used for the reduction. This procedure outputs a set H com-
posed of couples (h, eaux) as described previously and a generator matrix Gaux

of the code that was used for the reduction.

The procedure starts by calling a procedureCompute-Small-Codeword(
(
C⊥
)
N

, w)

returning a subset of { hN ∈
(
C⊥
)
N

: |hN | = w}. Then each of these vectors

is lifted into a vector of C⊥ to form a subset W of {h ∈H : |hN | = w }. Then
the [s, kaux]-linear code Caux is drawn uniformly at random from F this fam-
ily comes equipped with a list decoder Decode-Auxilary(Caux,a, taux) that
returns a subset of { eaux ∈ Sstaux : a + eaux ∈ Caux}. For each h, we call
Decode-Auxilary(Caux,hP , taux) and happens the couple (h, eaux) to the set
H of decoded dual vectors.

Algorithm 1

Name: Decoded-dual-vector-double-RLPN(C,P,N ,F)
1: Continue if N is an information set of C⊥
2: WN ← Compute-Small-Codeword(

(
C⊥

)
N

, w) ▷ Returns a subset of { h ∈
C⊥ : |hN | = w}

3: W ← { h ∈ C⊥ : h = Lift (D, I , x)}
4: Caux,Gaux

$←F
5: H ← ∅
6: for h ∈ W do
7: E ← Decode-Auxilary(Caux,hP)▷ Returns a set of error of small weight

eaux ∈ Ss
taux

s.t hP − eaux ∈ Caux
8: for eaux ∈ E do
9: H .append((h, eaux)) ▷ The set of decoded dual vectors
10: return (H , Gaux)

14



4.2 Computing the score function

The main quantity intervening in modern dual attacks is the score function of
the related LPN sample. It basically encodes how likely a vector z is the secret
s of the LPN problem.

Definition 4.3 (Score function). Let L be a list of LPN samples of the form
(a, b) ∈ Fkaux

2 × F2. For all z ∈ Fkaux
2 we define the score function as

FL (z)
def
=

∑
(a,b)∈L

(−1)b−⟨a,z⟩.

Intuitively this score is expected to be big when z is the secret of the LPN
problem. In particular, in double-RLPN, the score function evaluated on the
secret ePG⊺

aux (see Eq. (5)) gives the following.

Lemma 4.4. We have that

FL (ePG⊺
aux)

def
=

∑
(h,eaux)∈H

(−1)⟨eP ,eaux⟩+⟨eN ,hN ⟩

where L def
= L (H ,Gaux,y) is defined in Definition 4.1.

The procedure double-RLPN Computes this score function using a Fast Fourier
Transform based approach which was already used in RLPN and more generally
was introduced by [LF06] to seed-up LPN solvers. We refer to the previous
article for more details. The procedure is described in Score-function(L) and
is detailed in Algorithm 2.

Algorithm 2

Name: Score-function(L)
1: for a ∈ Fkaux

2 do
2: fL (r)←

∑
(a,)
¯
∈L : a=r

(−1)b

3: FL ← FFT(fL) ▷ FFT(f) is a Fast Fourier transform algorithm that outputs the

Fourier Transform f̂ of f .
4: return FL

Proposition 4.5. Given a list of LPN samples L, Algorithm 2 returns FL in
time and memory respectively

Time = poly (n)
(
|L|+ 2kaux

)
, Memory = poly (n)

(
|L|+ 2kaux

)
15



4.3 Step 4. Recovering e

We do not describe in detail this step because it will not be useful in our provable
variant ou double-RLPN. We give the basic outline just for the sake of comparison.
At this stage of the double-RLPN algorithm, the set of decoded dual vectors H is
computed as well as the associated score function FH ,y. Recovering e was done

by first considering a set of candidates for the secret ePG⊺
aux ∈ Fkaux

2 of the
obtained LPN problem by filtering out vectors whose score were low, namely by
considering the set of candidates { z ∈ Fkaux

2 : FH ,y (z) > T} where T is a well-
chosen threshold. Each candidate is then tested by solving some smaller decoding
problems which returns e if the considered candidate is such that z = ePG⊺

aux.
Testing a candidate is exponentially costly.

4.4 Key quantity of the analysis of double-RLPN

We recall here the basic quantities intervening in the analysis of double-RLPN
and that of our provable variant. This section allows the reader to interpret the
quantities that will appear in the main theorem of this paper and that we state
in the next section.

The analysis of double-RLPN was done when C is chosen by taking its gen-
erator matrix uniformly at random in Fk×n

2 and by supposing that the set W
of computed dual vectors is the whole set { h ∈ C⊥ : |hN | = w}. So that
the quantities are well-defined we condition all the probabilities by the event
that N is an information set of C⊥. To simplify the analysis the code Caux was
taken as a uniformly random [s, kaux]-linear codes equipped with a genie-aided
list decoder, namely by supposing that the Decode(Caux,hP , taux) returns the
set { eaux ∈ Sstaux

: eaux − hP ∈ Caux}. All in all this means that the set of
decoded dual vectors H is comprised of all possible couples

H = { (h, eaux) ∈ C⊥ × Sstaux : |hN | = w and hP + eaux ∈ Caux}.

There are two relevant quantities to the analysis : the average number of
LPN samples and the bias of the noise of the samples.

Number of available LPN samples. First, one could show that the expected
number of samples is

E (|L|) = E (|H |)

=

(
n−s
w

)
2k−s

(
s

taux

)
2s−kaux

=

(
n−s
w

)(
s

taux

)
2k−kaux

.

The reader interested in a rigorous proof can see this statement as a direct
corollary of the later stated Proposition 8.1. More roughly, this equality comes
from the fact that i) by construction, the expected number of dual vectors of
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C weight w on N is given by E
((
C⊥
)
N

⋂
Sn−s
w

)
=
(
n−s
w

)
/2k−s and ii) the

expected number of error returned by the auxiliary list decoder for each hP is
E
(
(Caux + hP)

⋂
Sstaux

)
=
(

s
taux

)
/2s−kaux .

Bias of the LPN samples. The second key quantity is the bias of the noise
⟨eN ,hN ⟩+ ⟨eP , eaux⟩ of the LPN samples. This quantity obviously depends on
the weight of the vectors. We recall that by construction

|hN | = w, |eaux| = taux

and that a bet is made on the weight of the error on each subpart, namely that

|eN | = u, |eP | = t− u.

Forgetting about the fact that all these vectors come from a decoding problem
we can easily estimate the bias of this noise.

Lemma 4.6. Bias of the noise by forgetting about the code structure. Let P
and N two complementary subset of J1, nK of size s and n− s respectively. Let
e ∈ Snt such that |eP | = u and |eN | = t− u. Then

bias (⟨eN ,hN ⟩+ ⟨eP , eaux⟩) = δ(n−s)
w (u) δ

(s)
taux (t− u)

where hN is taken uniformly at random in Sn−s
w and eaux is taken uniformly at

random in Sstaux
.

Proof. This is direct consequence of the Pilling-Up lemma and Lemma 3.12.

Of course, one cannot completely forget this code structure but ultimately
[CDMT24, Proposition 2] showed with a second-order technique that under some

conditions, the quantity δ
(n−s)
w (u) δ

(s)
taux (t− u) was with good probability a good

approximation of the bias of the noise of the LPN samples.

Rationale behind the attack. Under the flawed [MT23, CDMT24] LPN mod-
elling one would expect to require that the number N of LPN samples is superior
to n/ε2 in order to be able to recover the secret of an LPN problem with a bias
of noise ε. In our case this would roughly be that(

n−s
w

)(
s

taux

)
2k−kaux

>
n(

δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2
to recover the secret ePG⊺

aux. Of course because this modelling is flawed [CDMT24]
had to use a model [CDMT24, Model 1] in order to carry out the analysis. This
model was used to bound the size of the number of candidates in Step 4., see
Section 4.3.
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5 Results and main theorem

In this section we state the main result of this paper. We state a theorem giving
the performance of our provable variant of double-RLPN, we will describe in
detail this provable variant in the next Section 6. For simplicity, we state, as it
was the case for double-RLPN, our theorem in the case where we suppose that
we have access to a procedure that computes all the vectors of

(
C⊥
)
N

of weight
w. To make the quantities appearing in our theorem more intelligible, the reader
can refer to the previous Section 4.4. We mark with a ”*” the new constraints
that did not appear in the original paper [CDMT24, Proposition 9].

Theorem 5.1. There exists a positive poly-bounded function f such that for
any k, t, s, kaux, taux, w, u ∈ N implicit functions of a parameter n ∈ N and any
procedure Compute-small-codewords that are such that

1. (Computing all the whole set of dual vectors {h ∈ C⊥ : |hN | = w})

P
(
Compute-small-codewords(D) ̸= D

⋂
Sn−s
w

)
∈ o(1) ,

where D is taken by choosing its parity-check matrix uniformly at random in

F(k−s)×(n−s)
2 .

2. (Main constraint that we have enough dual vectors)

(
n−s
w

)(
s

taux

)
2k−kaux

∈ Ω

 f(ns/kaux)(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2
 ,

3. (Decoding the auxiliary code below Gilbert-Varshamov)
(

s
taux

)
/2s−kaux ∈ O(1) ,

4. *(Linear scaling of the parameters) s/kaux ∈ O(1),
5. *(N is an information set of the code C) n− s− k ∈ ω (1),

6. *(Small technical constraints) Root
(
K

(n−s)
w

)
−u ∈ Ω (n− s) and Root

(
K

(s)
taux

)
−

(t− u) ∈ Ω (s) and k − s ∈ ω(1) and n− k ∈ ω(1)

then there exists an algorithm solving DPG (n, k, t) with probability 1 − o(1) in
time and memory

Time = Õ

( (
n
t

)(
s

t−u

)(
n−s
u

) (Teq + 2kaux
))

, Memory = Õ
((
Meq + 2kaux

))
where Teq and Meq are respectively time and memory complexity of one call to the

procedure Compute-small-codewords(D) and where we recall that δ
(n)
w (t) is

defined in Lemma 3.12 and Root
(
K

(n)
w

)
is defined in Eq. (4). In particular the

said algorithm is the one defined later in Definition 7.4 by taking b
def
= ⌈s/kaux⌉

along with a goood choice for Niter.
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Next we make a comparison with [CDMT24, Proposition 9] giving the perfor-
mance of double-RLPN and the theorem we have just stated.

– The proposition giving the performance of the algorithm in [CDMT24, Propo-
sition 9] requires the use of the Poisson model [CDMT24, Model 1] whereas
our theorem do not require any model.

– [CDMT24, Proposition 9] the complexity is in 2kaux +Teq2
o(n)+Tcheck where

Tcheck is an additional term for checking false candidates and the 2o(n) is the
cost of one call to the auxiliary decoder. But recall that in practice [CDMT24]
verified that Tcheck never dominates the complexity.

– Our provable variant will require that N is an information set of C. So
that this happens with good probability we had to add the constraint on
the parameters that n − s − k ∈ ω (1) where we recall that n − s = |N |.
However, because s < k we have that this is unconditionally true for codes of

rate R
def
= k/n smaller than 0.5. We believe we could remove this constraint

but at the cost of a slightly more complex algorithm.
– The constraint that s/kaux ∈ O(1) comes from the choice we made for the

auxiliary code Caux : it is the condition required for i) the code to be op-
timal and ii) that we can decode it in polynomial time. In practice for the
parameters regime we are interested in this article, namely k = Θ (n) and
t = Θ (n), the optimal values of the parameters (i.e. matching the main
constraint and minimizing the complexity) always verify this condition. In
particular this is the case for all the given parameters of [CDMT24]. We be-
lieve that this condition could be removed by using Polar codes as suggested
in [Car20, CDMT24], but then the proof would not be as simple.

– In [CDMT24, Proposition 9] the main constraint needed for the proof under
the model was that(

n−s
w

)(
s

taux

)
2k−kaux

∈ Ω

 n8(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2
 . (6)

Here we have some other poly-bounded function f(nb) instead of n8. The
point is that, regardless of the polynomial, it is easy to create from a set
of parameter verifying constraint given by Eq. (6) a new set of parameters
verifying this new constraint by increasing w only slightly by a O(log2(n))
term. This could rigorously be shown by computing the derivative in w of

the asymptotic expansion of
(n−s

w )( s
taux

)
2k−kaux

(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2
.

– We added some small additional constraints (Point 6. in the theorem) to
make our statement rigorous. In practice those are always verified for non-
degenerate parameters. And, in particular, they are verified for all the asymp-
totic parameter datasets given in [CDMT24].

In particular, any complexity claims about double-RLPN made using [CDMT24,
Proposition 9] under the Poisson model [CDMT24, Model 1] are provably achieved
(by an algorithm that we describe next), up to polynomial factors, when the rate

of the code R
def
= k/n is smaller than 0.5.
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6 Fully provable double-RLPN

Let us now describe our provable variant of double-RLPN. Our algorithm retakes
the main loop of double-RLPN by choosing at random two complementary sub-
sets P and N and the main ingredient we reuse are the procedures describes
in ?? The procedure double-RLPN-ScoreFunction which given a vector y
computes the double-RLPN score function associated to the LPN problem gener-
ated by y (and some given subpart P and N of the support).

With these ingredients we build a Guessing-eN (C,y,P,N ) that will for
each vector in the secret space of the underlying LPN problem make a guess
for the value of eN by calling the previous procedure multiple times. We then
build a checking procedure which will check each guess for eN and will try
to reconstruct the whole error vector e. Importantly each guess is tested in
polynomial time.

Algorithm 3 Provable-double-RLPN algorithm

Name: Provable-double-RLPN(C,y, t)
Input: C a linear code of length n, y = c+ e ∈ Fn

2 with c ∈ C and |e| = t
Parameter: s, w, u and Niter

1: while i = 1 . . . Niter do

2: P
$←{P ⊂ J1, nK : |P| = s} ▷ Hope that |eN | = u

3: N ← J1, nK \P
4: G ←Guessing-eN (C,y,P,N )
5: e← Checking-eN (G, C,y,P,N , t)
6: if e ̸= ⊥ then
7: return e

6.1 Guessing phase

Recalling that Fkaux
2 the space in which lives the secret of the underlying LPN

problem ePGaux, our goal here is for each z ∈ Fkaux
2 , to make a guess on the

value of eN , we make this guess bit by bit. We will exploit the fact that when
z is secret of our LPN samples, namely ePG⊺

aux we have that

Lemma 6.1.

FH , y (ePG⊺
aux) =

∑
(h, eaux)∈H

(−1)⟨eN ,hN ⟩+⟨eP ,eaux⟩.

Observe that flipping the positions of the received word y is exactly flipping the
positions of the error vector e. Thus, we have an impact on the score function
by flipping the i’th bit of y in N .

Definition 6.2. For any i ∈ J1, nK we denote by y(i) ∈ Fn
2 the vector defined

as
(
y(i)
)
P

def
= yP and

(
y(i)
)
N

def
= yN + ξi where ξi ∈ Fn−s

2 is the vector which
is zero everywhere except on its i’th coordinate.
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Clearly we have that

FH ,y(i) (ePG⊺
aux) =

∑
(h, eaux)∈H

(−1)⟨eN +ξi,hN ⟩+⟨eP ,eaux⟩.

It is readily seen that this last quantity is expected to be bigger than original
FH ,y (ePG⊺

aux) if we flipped an erroneous position, namely if (eN )i = 1. This
is our decision rationale for our guess on eN .

Algorithm We compute for each z ∈ Fkaux
2 and associated guess for eN , call

it G (z) ∈ Fn−s
2 by successively flipping the bits of y as described above. More

precisely the i’th bit of G (z) is determined by computing a reference score
function FH ,y and computing the flipped score function FH ,y(i) and comparing
them.

Definition 6.3. For each x ∈ Fkaux
2 we denote by G (z) the vector of Fn−s

2 whose
i’th coordinate is equal to

G (z)i
def
=

{
1 if FH ,y(i) (z) > FH ,y (z)

0 else.
.

We call G (z) the guess for eN related to z.

We then store these guesses in a set G = {(z, G (z)) : z ∈ Fkaux
2 } and outputs

it.

Algorithm 4

Name: Guessing-eN (C,y,P,N )
Input: C,y,P,N
1: H ← Decoded-dual-vector-double-RLPN(C,P,N )
2: FH ,y ← Score-Function(y,H ) ▷ Reference value of the score function
3: while i = 1 . . . n− s do
4: y(i) ← y + ξNi ▷ This flips the i’th bit of eN

5: FL
H ,y(i) ← Score-Function(y(i),H ) ▷ Comparative score function

6: Compute G (z) (Definition 6.3) for all z ∈ Fkaux
2

7: return {(z, G (z)) : z ∈ Fkaux
2 }

6.2 Checking phase

Here we want to check each guess for eN . It is important that each guess is
checked in polynomial time as we range over the whole secret space Fkaux

2 , and
we want this step to no dominate in front of the FFT say. Note that in the case
of double-RLPN the secret of the LPN samples is not eP but rather some linear
combination of eP , say ePG⊺

aux where Gaux is the generator matrix of the code
used in the reduction from sparse− LPN to plain− LPN. Consequently, given z
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a candidate for ePG⊺
aux and an associated guess for eN we cannot easily verify

if this couple is indeed the solution to our decoding problem as we could have
done if we had access to eP . Notably, trying to recover eP from ePG⊺

aux would
be exponentially harmful in here as we observe that in practice our double-RLPN
optimal parameters are such that this compression of eP is extremely lossy,
namely the Hamming sphere in which eP lives is exponentially larger than this
arrival space. We believe there are workarounds for this issue but make rather
use the following stategy to keep the algorithm simple.

The procedure. Note that if N is an information set of the code C then we
can easily check a guess for eN . Indeed, a guess z for eN can be verified in
polynomial time by simply computing the unique codeword c of C which is such
that cN = yN − z and then check that y− c is of right Hamming weight t (the

weight of the error). Importantly, denoting by s
def
= |P|, the setting where N is

an information set with good probability, is when

n− s ⩾ k

which are trivially verified by all our parameters when the rate R of the code
C is smaller than 0.5 as s ⩽ k. This is more than enough to account for the
interesting parameters for which we beat the ISD’s. The checking algorithm is
described in Algorithm 5.

Algorithm 5

Name: Checking-eN (G, C,y,P,N )
Input: G, C,y,P,N
Parameter: t
1: while e

(z)
N ∈ G do

2: cN ← yN − e
(z)
N

3: c← Lift (C, N , cN )
4: if |y − c| = t then
5: e← y − c
6: return e

It is readily seen that we have that If the guess for eN related to the secret
ePG⊺

aux is good, namely if G (ePG⊺
aux) = eN and if N contains an information

set of C then Checking-eN outputs e.

7 Instantiation with a juxtaposition codes

Goal. Now, let us instantiate our algorithm with a specific family of [s, kaux]-
linear code F that are used in the reduction from sparse LPN to plain LPN : the
so called auxiliary code Caux is drawn uniformly at random in F in Algorithm 1.
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The codes and its decoder must be as efficient as possible : given hP one wants
that the decoder returns a codeword caux ∈ Caux at small distance taux possible
while having a small decoding time the decoding distance, i.e. the weight of hP−
caux, crucially intervene in the noise of the generated LPN samples. Information
theory tells us that the best we could hope the decoding distance taux equals
to the Gilbert-Varshamov distance dGV (s, kaux) for a proportion 1− o(1) of the
word of the space Fs

2.

Codes/Decoder used in [CDMT24]. Forgetting about the question of ac-
tually having a decoder running in polynomial time, this could be achieved with
a random code. In fact, in double-RLPN the analysis was carried out when Caux
is taken uniformly at random among [s, kaux]-linear codes and it was supposed
to be equipped with an ideal genie-aided decoder that finds all the codeword at
distance taux and where each codeword found in time poly (n). In [CDMT24, ] it
was also proposed to use a Cartesian product (what we call juxtaposition codes)
of b = s/ log2(s) smaller random linear codes Caux = C(1)×C(2)×· · ·×C(b), each
of length s/ log2(s) and dimension kaux/ log2(s).

Definition 7.1 (Juxtaposition code). We define the set of juxtaposition
codes with b blocks, and of length n and dimension k, namely Cjuxt [b, n, k], as
the set of linear codes C such that there exists b linear codes, (C(i))i∈J1, bK that

are such that for every i ∈ J1, bK, C(i) is an [n(i), k(i)]-linear code and such that

C = C(1) × C(2) × · · · × C(b)

where we denote implicitly (in b), for each integer v ∈ N its i’th part as:

v(i)
def
=

{
⌊v/b⌋+ 1 if i ⩽ (v mod b)

⌊v/b⌋ else
(7)

Definition 7.2. When the context is clear we will implicitly denote the i’th

part of a vector x ∈ Fn
2 relative to the support given by n by x(i) def

= xI where

I
def
= J

∑i−1
j=1 n

(j),
∑i

j=1 n
(j)K. In the same manner, given C ∈ Cjuxt [b, n, k] we

denote by C(i) its i’th constituent code.

Decoding hP is done by enumerating independently the codewords of each
code and decode independently on each part. It was shown overall that this
incurs only a loss of order 2o(n) in double-RLPN compared to the ideal case
where a random code with a genie-aided decoder is used.

The decoder we use here. Here we use the base observation that even if Caux is
a random [s, kaux]-linear code, it can be decoded at distance taux in polynomial
amortized time as long as number total number of calls, to the decoders is
superior to the number of admissible errors of good weight eaux ∈ Sstaux , namely(
taux

s

)
. In this case one can simply create a syndrome table { (Hauxeaux, eaux) :
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eaux ∈ Sstaux
} once and for all and, when one wants to decode a ∈ Fs

2 onto
Caux at distance taux, the decoders look up the table and returns the eaux that
are such that Hauxa = Hauxeaux. This idea can be extended by considering
a juxtaposition code with b block and decoding each code independently at
distance taux/b with this error enumeration technique, this decoder was already
used in [GJL14]. Basically the decoder returns the following set of errors.

Definition 7.3 (Set of admissible errors). Let b, n, k, t ∈ N. Let C ∈ Cjuxt [b, n, k]
be a juxtaposition code of length n and dimension k. Let y ∈ Fn

2 , we define the
set of admissible errors as

Decjuxt (C,y, t) def
= {e ∈ Snt :

∣∣∣e(i)∣∣∣ = t(i) and y(i) − e(i) ∈ C(i), ∀i ∈ J1, bK}.

We have in particular that

Decjuxt (C,y, t) ⊂ {e ∈ Snt : e+ y ∈ C}.

This is particularly useful when one have to decode an exponential number of vec-
tors, say 2λs with λ > 0. The point being that there exists a constant b such that

the cost of computing the syndrome table is poly (n)
(

s/b
taux/b

)
= poly (n) b

√(
s

taux

)
is smaller than 2λs. The fact that b is constant allows on to argue that

E
(∣∣Decjuxt (C,y, t)

∣∣) = Ω̃

( (
taux
s

)
2s−kaux

)
.

With a variance argument we could show that this allows to conclude that juxta-
position can decode returning this set of admissible errors is essentially as good
as a random linear codes with a genie aided-decoder.

All in all here is our provable-double-RLPN algorithm instantiated with this
family of code and this decoder.

Definition 7.4 (Provable-DoubleRLPN with juxtaposition codes). We
define an instantiation of Algorithm 3 where we have an additionnal parameter
b ∈ N and where:

– The family F ⊂ C [s, kaux] of auxiliary codes is defined as

F = Cjuxt [b, s, kaux]

– After having drawn the code Caux from F , compute and store for each i ∈
J1, bK an hash table T (i) indexed by syndromes, namely T (i)[s] = {e(i)aux ∈
Ss(i)
t
(i)
aux

: Haux
(i)e

(i)
aux = s(i) } where Haux

(i) is a parity-check matrix of C(i)aux.

– A call to Decode(Caux,a, taux) returns Decjuxt (C,a, taux) by looking up the
previous syndrome tables.

Importantly, our regime of interests here will be when R, t = Θ (n), this corre-
sponds to regime in which the results of [CDMT24] where given. In this case,
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the optimal parameters of double-RLPN are such that s, kaux, taux = Θ (s) and,
in particular, the complexity of an iteration of double-RLPN is exponential in n
and at least equal to the complexity of the FFT given by kaux 2kaux . Basically

this means that there exists a constant b such that b

√(
s

taux

)
< 2kaux , making the

syndrome table creation step negligible compared to the cost of the FFT.
We directly have the following complexity result.

Proposition 7.5 (Complexity of fully provable double-RLPN with jux-
taposition codes). Let n and let k, t, s, kaux, taux, Niter, b be implicit functions
of n. Suppose that b = ⌈s/kaux⌉ and that

(
s

taux

)
/2s−kaux ∈ O(1). Then, given an

instance of DPG (n, k, t), the expected time and memory complexity of Defini-
tion 7.4 is given by

Time = Õ
(
Niter

(
Teq + 2kaux

))
, Memory = Õ

((
Meq + 2kaux

))
where Teq and Meq are respectively the expected time and memory complexity of
one call to Compute-Small-Codewords.

8 Analysis

In this section we prove the main Theorem 5.1 by analyzing our provable variant
of double-RLPN instantiated with juxtaposition code. Forgetting about the other
technical details that we will deal with later in the rigorous proof, in essence,
proving our main theorem, mainly relies on proving that, we have with proba-
bility 1 − o(1) that when x = eP , the guess on eN is eN . By construction of
the guess, it is sufficient to prove that with probability 1− o(1/n) we have that

FH ,y (eP) > FH ,y(i) (eP) if (eN )i = 0, (8)

FH ,y (eP) < FH ,y(i) (eP) if (eN )i = 1. (9)

The result can then be concluded with a union bound on i ∈ J1, n − sK. Our
proof mainly relies on the two following propositions. The first is a second-order
concentration bound on the score function.

Proposition 8.1. There exists a positive poly-bounded function f0 such that for

any t, k, s, kaux, taux, w, u, b ∈ N implicit functions of n such that

∏b
j=1 (

s(j)

t
(j)
aux

)
2s−kaux

/2s−kaux ∈
O(1) then

P
(
|FH ,y (ePG⊺

aux)− E (FH ,y (ePG⊺
aux))| ⩾ f0(n

b)
√
N
)
= O

(
1

n2

)
and

E (FL (ePG⊺
aux)) = Nδ(n−s)

w (|eN |)
b∏

j=1

δ
(s(j))

t
(j)
aux

(∣∣∣e(i)P

∣∣∣) ,
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where N is the expected number of LPN samples, namely N
def
= E (|H |) and is

given by

N = NeqNaux, Neq
def
=

(
n−s
w

)
2k−s

, Naux
def
=

∏b
j=1

(s(j)
t
(j)
aux

)
2s−kaux

and where the distributions considered in the probabilities are as follows

– N and P are two fixed complementary subsets of J1, nK of size s and n− s
respectively.

– C is chosen by taking its generator matrix G ∈ Fk×n
2 uniformly at random

in { G ∈ Fk×n
2 : rank (GP) = s} and Caux is chosen by taking its generator

matrix Gaux ∈ Fkaux×s
2 uniformly at random among matrices of rank kaux.

– y = c+ e where c ∼ U (C) and e ∈ Snt is a fixed vector.
– The set H is

H
def
= {(maux,h) ∈ Fkaux

2 ×C⊥ : |hN | = w, ∀i ∈ J1, bK, (mauxGaux + hP)
(i) ∈ Ss

(i)

t
(i)
aux
}.

– Where L def
= L (H ,y, Gaux,P) is defined in Definition 4.1 and where we

recall that FlistL (z) is defined in Definition 4.3.

This proposition is proved in Section 10.1.

Remark 8.2. This proposition is only a slight variant of [CDMT24, Proposition
2].

The main part of our proof relies on the following lemma that state that the
expected value of FL (ePG⊺

aux) and FH ,y(i) (ePG⊺
aux) are essentially as far as

the expected value of FH ,y (ePG⊺
aux) and 0.

Lemma 8.3. There exists a positive poly-bounded function f1 such that for any

s, w, u ∈ N implicit functions of n ∈ N such that Root
(
K

(n−s)
w

)
−u ∈ Ω (n− s)

we have that

δ(n−s)
w (u− 1)− δ(n−s)

w (u) ⩾
1

f1(n)
δ(n−s)
w (u) ,

δ(n−s)
w (u)− δ(n−s)

w (u+ 1) ⩾
1

f1(n)
δ(n−s)
w (u) .

This lemma is proved in Section 10.2.

8.1 Rest of the proof.

Recall that our algorithm is iterated a number Niter of times. In RLPN this was
done to ensure that there existed at least one iteration such that |eN | = u
where u is a parameter. Clearly, from Proposition 8.1 one can see that, because
we used juxtaposition codes with b block, the distribution of the score function
evaluated on the secret, FH ,y (ePG⊺

aux), finely depends on the weight of e on
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each subpart, namely on |eN | and
∣∣∣e(i)P

∣∣∣ for each i ∈ J1, bK. We will make the

additionnal, finer bet that
∣∣∣e(i)P

∣∣∣ is of typical weight roughly (t − u)/b. More

precisely we will make the bet that

|eN | = u

b∧
i=1

∣∣∣e(i)P

∣∣∣ = (t− u)
(i)

.

First, because b is constant, essentially this bet is verified with the same proba-
bility, up to polynomial factors, as the simpler bet that |eN | = w. Namely, we
have that

Lemma 8.4. There exists a positive poly-bounded function g such that for any
t, s, b implicit functions of n we have that

P

(
|eN | = u

b∧
i=1

∣∣∣e(i)P

∣∣∣ = (t− u)
(i)

)
⩾

1

g(nb)

(
n−s
u

)(
s

t−u

)(
n
t

)
where N and P are any fixed complementary subsets of J1, nK and e is taken
uniformly at random in Snt .

The proof is straightforward using Proposition 3.13. Moreover, using again the
fact b is constant one can show easily that all the quantities appearing in Propo-
sition 8.1, like N and the product of the biases, polynomially relates to the ideal
case b = 1. More precisely we have the following.

Proposition 8.5 (Relating the quantities to the case b = 1). There exists
a positive poly-bounded function f2 such that for any k, t, s, u, taux, b ∈ N implicit
functions of n ∈ N such that

Root
(
K(n−s)

w

)
−u ∈ Ω (n− s) and ∀i ∈ J1, bKRoot

(
K

(s)
taux

)
−(t−u) ∈ Ω (s)

then we have that

b∏
j=1

δ
(s(j))

t
(j)
aux

(∣∣∣(t− u)
(i)
∣∣∣) ∈ Ω

(
1

f2(nb)
δ
(s)
taux (t− u)

)
,

∏b
j=1

(s(j)
t
(j)
aux

)
2s−kaux

∈ Ω

(
1

f2(nb)

(
s

taux

)
2s−kaux

)
.

The proof is straightforward using Proposition 3.13 and Proposition 3.14.

Proof (Proof of the main Theorem 5.1). In Theorem 5.1 we choose the positive

poly-bounded function f appearing as f(n) = (f0(n)f1(n))
2
f2(n)

3 where f0, f1
and f2 are defined in Proposition 8.1, Lemma 8.3 and Proposition 8.5 respec-
tively. Let us now consider parameters k, t, s, w, u, s, kaux, taux, b satifying the
conditions of the theorem. Now, about the choice for Niter, by using Lemma 8.4
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we can show that there exists Niter that is such that i) Niter = Õ
(

(nt)
( s
t−u)(

n−s
u )

)
and ii) there exists with probability 1 − o(1) an iteration of the algorithm that
is such that the bet on the error is valid, namely such that

|eN | = u

b∧
i=1

∣∣∣e(i)P

∣∣∣ = (t− u)
(i)

. (10)

Let us consider such a value for Niter and suppose we are in one of the iteration
where the bet is valid. It is easy to convince oneself that the conditions in the
theorem are sufficient to ensure that the conditions to apply Proposition 8.1
are met with probability 1 − o(1). We recall that those conditions to apply
Proposition 8.1 are that dim (CP) = s and that H is equal to the full set of
decoded dual vectors. We suppose that this iteration is such that those conditions
are met. Let i ∈ J1, n− sK and let us now prove that

P (G (ePG⊺
aux)i = (eN )i) = 1− o(1/n). (11)

Note that proving it would directly prove our theorem. Indeed we then we
can easily prove that

P (G (ePG⊺
aux) = eN ) = 1− o(1)

by using the union bound. In turn, we can show that N is an information set of
the code C with probability 1−o(1) by using the condition that n−s−k ∈ ω(1) in
the theorem. This means that with probability 1−o(1) the procedure Testing-
eN returns the error e.

Let us now prove Eq. (11). Suppose, without loss of generality that (eN )i =
1, the proof in the other case is similar. Recall that by constructionG (ePG⊺

aux)i =
1 if and only if FH ,y (ePG⊺

aux) < FH ,y(i) (ePG⊺
aux). Thus to prove our result

we only have to prove that

P
(
FH ,y (ePG⊺

aux) < FH ,y(i) (ePG⊺
aux)

)
= 1− o(1).

We prove it using Proposition 8.1. Indeed we can write that

P
(
|FH ,y (ePG⊺

aux)− E (0)| ⩾ f1(n
b)
√
N
)
= O

(
1

n2

)
,

P
(∣∣FH ,y(i) (ePG⊺

aux)− E (1)
∣∣ ⩾ f1(n

b)
√
N
)
= O

(
1

n2

)
where

E (x)
def
= Nδ(n−s)

w (u+ x)

b∏
j=1

δ
(s(j))

t
(j)
aux

(
(t− u)

(j)
)
, N

def
=

(
n−s
w

)∏b
j=1

(s(j)
t
(j)
aux

)
2k−kaux

.

This allows saying that we make the good guess for each coordinate with prob-
ability 1− o(1/n) as long as

E (−1)− E (0) > f0(n
b)
√
N (12)
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Using successively Lemma 8.3 and Proposition 8.5 we get

E (−1)− E (0) ⩾
1

f1(nb)
Nδ(n−s)

w (u)

b∏
j=1

δ
(s(j))

t
(j)
aux

(
(t− u)

(j)
)

⩾
1

f1(n)f2(n)
Nδ(n−s)

w (u) δ
(s)
taux (t− u)

Plugging this into Eq. (12), this means that we make the right decision with
probability 1− o(1) if

1

f1(nb)f2(nb)
Nδ(n−s)

w (u) δ
(s)
taux (t− u) ⩾ f0(n

b)
√
N

This is equivalent to asking that

N ⩾

(
f0(n

b)f1(n
b)f2(n

b)
)2(

δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2 .
But, from Proposition 8.5 we have that

N ⩾
1

f2(nb)

(
s

taux

)
2s−kaux

.

Thus replacing N in the previous equation we get that our condition to make
the right decision with probability 1− o(1) is(

n−s
w

)(
s

taux

)
2s−kaux

⩾

(
f0(n

b)f1(n
b)
)2

f2(n
b)3(

δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2 .
which is exactly the condition of the theorem.

9 Conclusion

In this work we have presented a variant of the most recent code-based dual
attack, double-RLPN, but that we can fully prove without using any heuristics
up to rate R ⩽ 0.5 and that has the same performances, up to polynomial
factors, as the original algorithm. We believe that this proof strategy could also
be adapted to lattice-based dual attacks.
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10 Appendices

10.1 Proof of the second-order concentration bound

The goal of this section is to prove Proposition 8.1 that we recall here.

Proposition 8.1. There exists a positive poly-bounded function f0 such that for

any t, k, s, kaux, taux, w, u, b ∈ N implicit functions of n such that

∏b
j=1 (

s(j)

t
(j)
aux

)
2s−kaux

/2s−kaux ∈
O(1) then

P
(
|FH ,y (ePG⊺

aux)− E (FH ,y (ePG⊺
aux))| ⩾ f0(n

b)
√
N
)
= O

(
1

n2

)
and

E (FL (ePG⊺
aux)) = Nδ(n−s)

w (|eN |)
b∏

j=1

δ
(s(j))

t
(j)
aux

(∣∣∣e(i)P

∣∣∣) ,
where N is the expected number of LPN samples, namely N

def
= E (|H |) and is

given by

N = NeqNaux, Neq
def
=

(
n−s
w

)
2k−s

, Naux
def
=

∏b
j=1

(s(j)
t
(j)
aux

)
2s−kaux

and where the distributions considered in the probabilities are as follows

– N and P are two fixed complementary subsets of J1, nK of size s and n− s
respectively.

– C is chosen by taking its generator matrix G ∈ Fk×n
2 uniformly at random

in { G ∈ Fk×n
2 : rank (GP) = s} and Caux is chosen by taking its generator

matrix Gaux ∈ Fkaux×s
2 uniformly at random among matrices of rank kaux.

– y = c+ e where c ∼ U (C) and e ∈ Snt is a fixed vector.
– The set H is

H
def
= {(maux,h) ∈ Fkaux

2 ×C⊥ : |hN | = w, ∀i ∈ J1, bK, (mauxGaux + hP)
(i) ∈ Ss

(i)

t
(i)
aux
}.

– Where L def
= L (H ,y, Gaux,P) is defined in Definition 4.1 and where we

recall that FlistL (z) is defined in Definition 4.3.

The main technical lemma that we will use here is the following giving the
first two moments of the score function.
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Lemma 10.1. (Main technical lemma.) For any k, t, s, u, w, kaux, taux, b ∈ N are
implicit functions of n ∈ N we have that

E (FH ,y (ePG⊺
aux)) = N δ(n−s)

w (|eN |)
b∏

j=1

δ
(s(j))

t
(j)
aux

(∣∣∣e(i)P

∣∣∣)
Var (FH ,y (ePG⊺

aux)) = O
(
nb+1 N max (1, Naux)

)
Remark 10.2. We believe that the term nb+1 appearing in the variance is much
more reasonable and is rather some O

(
2b
)
in the constant rate regime.

Proof (Proof of Proposition 8.1). This is directly obtained by using Byenemé-
Chebyshev inequality along with the moments given in Lemma 10.1.

Proving the second-order moments. Let us now prove Lemma 10.1. We recall for
convenience two lemmas we will be useful to prove the proposition. We recall
here the distribution appearing in the previous expression and which will

Lemma 10.3 (Distribution of some related quantities). For any k, t, s, u, w, kaux, taux, b ∈
N implicit functions of n ∈ N we have that

R ∼ U
(
Fs×(n−s)
2

)
, (13)(

C⊥
)
N
∼ UH (n− s, n− k) , (14)

R and CN are independent. (15)

where R
def
= Lift

(
C⊥, N

)
and where the other quantities are defined in ??.

Proof. The second property is trivial and the first and third can be shown by
observing the way R is constructed in ?? along with the fact that by assumption

in Proposition 8.1 GN is distributed uniformly at random in Fk×(n−s)
2 .

This allows us to get the following lemma

Lemma 10.4. We have that

E (FH ,y (ePG⊺
aux)) = N δ(n−s)

w (|eN |)
b∏

j=1

δ
(s(j))

t
(j)
aux

(∣∣∣e(i)P

∣∣∣) ,
Var (FH ,y (ePG⊺

aux)) ⩽ N

1 + ∑
c∈{0,1}b : c ̸=0

b∏
i=1

 (s(i)
t
(i)
aux

)
2s(i)−t

(i)
aux

ci
Proof. Let us first compute the expected value. Recall that we have that

|eN | = u,
∣∣∣e(1)P

∣∣∣ = (t− u)
(1)

, · · · ,
∣∣∣e(b)P

∣∣∣ = (t− u)
(b)

(16)
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We will show that

E (FH ,y (ePG⊺
aux)) = N δ(n−s)

w (|eN |)
b∏

j=1

δ
(s(j))

t
(j)
aux

(∣∣∣e(i)P

∣∣∣) .
Rewriting the score function we have that

F (ePG⊺
aux)

=
∑

hN ∈Sn−s
w

∑
e
(1)
aux∈Ss(1)

t
(1)
aux

· · ·
∑

e
(b)
aux∈Ss(b)

t
(b)
aux

(−1)⟨eN ,hN ⟩

[
b∏

i=1

(−1)
〈
e
(i)
P ,e(i)

aux

〉]
1hN ∈(C⊥)N

b∏
i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

(17)

By linearity of the expected value we have that

E (FH ,y (ePG⊺
aux)) =

∑
hN ∈Sn−s

w

∑
e
(1)
aux∈Ss(1)

t
(1)
aux

· · ·
∑

e
(b)
aux∈Ss(b)

t
(b)
aux[

(−1)⟨eN ,hN ⟩
b∏

i=1

(−1)
〈
e
(i)
P ,e(i)

aux

〉] [
E

(
1hN ∈(C⊥)N

b∏
i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)]

(18)

Now from the independence of the indicator variable we get that

E

(
1hN ∈(C⊥)N

b∏
i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)
= E

(
1hN ∈(C⊥)N

) b∏
i=1

E
(
1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)
= P

(
hN ∈

(
C⊥
)
N

) b∏
i=1

P
(
e(i)aux + (hN R⊺)

(i) ∈ C(i)aux

)
.

(19)

From Lemma 10.3 we have that
(
C⊥
)
N
∼ UH (n− s, n− k) thus using Lemma 3.9

we get

P
(
hN ∈

(
C⊥
)
N

)
=

1

2k−s
.

From Lemma 10.3 we have that for each i ∈ J1, bK, e(i)aux+(hN R⊺)
(i) ∼ U

(
Fs(i)

2

)
,

thus as C(i)aux is an [s(i), k
(i)
aux]−linear code we get that

P
(
e(i)aux + (hN R⊺)

(i) ∈ C(i)aux

)
=

1

2s(i)−k
(i)
aux

. (20)
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Plugging these last equation into Eq. (19) yield that

E

(
1hN ∈(C⊥)N

b∏
i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)
=

1

2k−s

b∏
i=1

1

2s(i)−k
(i)
aux

=
1

2k−kaux
(21)

where in the last equation we used the fact that by definition of the i’th part of
a vector in Eq. (7) we have that

b∑
i=1

s(i) = s,

b∑
i=1

k(i)aux = kaux.

Finally, plugging this last equality back into Eq. (18) gives that

E (F (ePG⊺
aux)) =

1

2k−kaux

∑
hN ∈Sn−s

w

∑
e
(1)
aux∈Ss(1)

t
(1)
aux

· · ·
∑

e
(b)
aux∈Ss(b)

t
(b)
aux

(−1)⟨eN ,hN ⟩
b∏

i=1

(−1)
〈
e
(i)
P ,e(i)

aux

〉

=
1

2k−kaux
K(n−s)

w (|eN |)
b∏

i=1

K
(s(i))

t
(i)
aux

(∣∣∣e(i)P

∣∣∣)

=

(
n−s
w

)∏b
i=1

(s(i)
t
(i)
aux

)
2k−kaux

K
(n−s)
w (|eN |)

∏b
i=1 K

(s(i))

t
(i)
aux

(∣∣∣e(i)P

∣∣∣)(
n−s
w

)∏b
i=1

(s(i)
t
(i)
aux

)
= Nδ(n−s)

w (|eN |)
b∏

i=1

δ
(s(i))

t
(i)
aux

(∣∣∣e(i)P

∣∣∣)
where in the last lines we used the definition of δ in Lemma 3.12.

Let us now compute the variance of F (ePG⊺
aux). Starting again from Equa-

tion (17) and denoting by A ∈ {−1, 1} the value:

A
(
hN , e(1)aux, . . . , e

(b)
aux

)
def
= (−1)⟨eN ,hN ⟩

[
b∏

i=1

(−1)
〈
e
(i)
P ,e(i)

aux

〉]
we have that

F (ePG⊺
aux) =

∑
hN ∈Sn−s

w

∑
(
e(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

A
(
hN , e(1)aux, . . . , e

(b)
aux

)
1hN ∈(C⊥)N

b∏
i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux
.

Now we use the fact that we can upper bound the variance of
∑

i AiXi where
Xi are some random variables the Ai ∈ {−1, 1} are some fixed coefficient by
upper bounding the covariance as

Cov (Ai Xi, Aj Xj) = AiAjCov (Xi, Xj)

⩽ |Cov (Xi, Xj)| .
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This observation allows us to write that

Var (F (ePG⊺
aux)) ⩽ V + C (22)

where

V
def
=

∑
hN ∈Sn−s

w

∑
(
e(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

Var

(
1hN ∈(C⊥)N

b∏
i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)

(23)
and

C
def
=

∑
hN ∈Sn−s

w

∑
gN ∈Sn−s

w

∑
(
e(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

∑
(
z(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

1(hN , eaux )̸=(gN , zaux) |C (hN , gN , eaux, zaux)| (24)

where

C (hN , gN , eaux, zaux)

def
= Cov

(
1hN ∈(C⊥)N

b∏
i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux
, 1gN ∈(C⊥)N

b∏
i=1

1
z
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)
.

(25)

Let us first compute the term V . As V is the variance of a Bernoulli distribution,
we can upper bound it by the expected value of this Bernoulli:

Var

(
1(hN R⊺,hN )∈W

b∏
i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)
⩽ E

(
1(hN R⊺,hN )∈W

b∏
i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)

=
1

2k−kaux
(Eq. (21))

And thus, plugging this last equation in Eq. (23) we get

V ⩽
∑

hN ∈Sn−s
w

∑
(
e(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

1

2k−kaux

=

(
n−s
w

)∏b
i=1

(s(i)
t
(i)
aux

)
2k−kaux

= N.
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Let us now compute the covariance terms C by first rewritingC (hN , gN , eaux, zaux).
We have

C (hN , gN , eaux, zaux) = E

(
1hN ∈(C⊥)N

b∏
i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux
1gN ∈(C⊥)N

b∏
i=1

1
z
(i)
aux+(gN R⊺)(i)∈C(i)

aux

)

−E

(
1hN ∈(C⊥)N

,

b∏
i=1

1
e
(i)
aux+(gN R⊺)(i)∈C(i)

aux

)
E

(
1gN ∈(C⊥)N

,

b∏
i=1

1
z
(i)
aux+(gN R⊺)(i)∈C(i)

aux

)
Thus

C (hN , gN , eaux, zaux) =

= E

(
1hN ∈(C⊥)N

1gN ∈(C⊥)N

b∏
i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux
1
z
(i)
aux+(gN R⊺)(i)∈C(i)

aux

)
−
(

1

2k−kaux

)2

= P
(
hN , gN ∈

(
C⊥
)
N

) b∏
i=1

P
(
e(i)aux + (hN R⊺)

(i) ∈ C(i)aux, z
(i)
aux + (gN R⊺)

(i) ∈ C(i)aux

)
−
(

1

2k−kaux

)2

(26)

where in the last line we used the independence of the variables.
1. Case hN ̸= gN . Suppose here that hN ̸= hN Let us first compute

C (hN , gN , eaux, zaux). First, as
(
C⊥
)
N
∼ UH (n− s, n− k) we get from

Lemma 3.9 that

P
(
hN , gN ∈

(
C⊥
)
N

)
=

(
1

2k−s

)2

Moreover, regardless of the values of e
(i)
aux and z

(i)
aux we have that e

(i)
aux+(gN R⊺)

(i)

and z
(i)
aux + (gN R⊺)

(i)
are independent and uniformly distributed which yields

that

if hN ̸= gN then P
(
e(i)aux + (hN R⊺)

(i) ∈ C(i)aux, z
(i)
aux + (gN R⊺)

(i) ∈ C(i)aux

)
=

(
1

2s(i)−k
(i)
aux

)2

.

Plugging this last equality back into C gives that

If hN ̸= gN then C (hN , gN , eaux, zaux) = 0.

Using this fact in Eq. (24) gives that

C =
∑

hN ∈Sn−s
w

∑
(
e(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

∑
(
z(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

1eaux ̸=zaux
|C (hN , hN , eaux, zaux)|

(27)
2. Case hN = gN . Let us now compute |C (hN , hN , eaux, zaux)|. Recall

that from Eq. (26) we have that

C (hN , hN , eaux, zaux) =

= P
(
hN ∈

(
C⊥
)
N

) b∏
i=1

P
(
e(i)aux + (hN R⊺)

(i) ∈ C(i)aux, z
(i)
aux + (gN R⊺)

(i) ∈ C(i)aux

)
−
(

1

2k−kaux

)2

.
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But as we have that

P
(
hN ∈

(
C⊥
)
N

) b∏
i=1

P
(
e(i)aux + (hN R⊺)

(i) ∈ C(i)aux, z
(i)
aux + (hN R⊺)

(i) ∈ C(i)aux

)
⩽

1

2k−s

b∏
i=1

(
1

2s(i)−t
(i)
aux

)1+1
e
(i)
aux ̸=z

(i)
aux

=
1

2k−kaux

b∏
i=1

(
1

2s(i)−t
(i)
aux

)1
e
(i)
aux ̸=z

(i)
aux

This yield that

|C (hN , hN , eaux, zaux)| = O

(
1

2k−kaux

b∏
i=1

(
1

2s(i)−t
(i)
aux

)1
e
(i)
aux ̸=z

(i)
aux

)
.

Finally,

C = O

 ∑
hN ∈Sn−s

w

∑
(
e(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

∑
(
z(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

1eaux ̸=zaux

1

2k−kaux

b∏
i=1

(
1

2s(i)−t
(i)
aux

)1
e
(i)
aux ̸=z

(i)
aux


= O

(n−s
w

)∏b
i=1

(s(i)
t
(i)
aux

)
2k−kaux

∑
c∈{0,1}b : c̸=0

b∏
i=1

 (s(i)
t
(i)
aux

)
2s(i)−t

(i)
aux

ci
= O

N
∑

c∈{0,1}b : c̸=0

b∏
i=1

 (s(i)
t
(i)
aux

)
2s(i)−t

(i)
aux

ci .

Plugging this last upper bound for C along with the expression of V in Eq. (23)
in Eq. (22) allows writing

Var (FH ,y (ePG⊺
aux)) ⩽ N

1 +O

 ∑
c∈{0,1}b : c̸=0

b∏
i=1

 (s(i)
t
(i)
aux

)
2s(i)−k

(i)
aux

ci
We can now prove our main lemma.

Proof (Proof of Lemma 10.1). The expected values are already given by Lemma 10.4,
we only have to show that

Var (F (ePG⊺
aux)) = O

(
N nb+1 max (1, Naux)

)
.

Recall that from Lemma 10.4, we have that

Var (F (ePG⊺
aux)) ⩽ N

1 + ∑
c∈{0,1}b : c̸=0

b∏
i=1

 (s(i)
t
(i)
aux

)
2s(i)−t

(i)
aux

ci . (28)
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The result will come from the fact that, as for any i, j we have that

s(i) = s(j) ± 1,

k(i)aux = k(j)aux ± 1,

t(i)aux = t(i)aux ± 1,

we can write that (s(i)
t
(i)
aux

)
2s(i)−k

(i)
aux

= O

 s(i) + 1

t
(i)
aux + 1

(s(j)
t
(j)
aux

)
2s(j)−k

(j)
aux

 (29)

= O(n)
(s(j)
t
(j)
aux

)
2s(j)−k

(j)
aux

(30)

The previous equation yields that, regardless of c ∈ {0, 1}b in Eq. (28) we have
that

b∏
i=1

 (s(i)
t
(i)
aux

)
2s(i)−t

(i)
aux

ci

= O

nb max

1,

∏b
i=1

(s(i)
t
(i)
aux

)
2s−kaux


= O

(
nb max (1, Naux)

)
.

Plugging this last equation in Eq. (28) we get:

Var (F (ePG⊺
aux)) ⩽ N

1 + ∑
c∈{0,1}b : c ̸=0

O
(
nb max (1, Naux)

)
⩽ N

[
1 + O

(
nb+1 max (1, Naux)

)]
= O

(
N nb+1 max (1, Naux)

)
.

Which is our desired result.

10.2 Proof of the lemma comparing the biases

In this section we prove Lemma 8.3 and which we recall here.

Lemma 8.3. There exists a positive poly-bounded function f1 such that for any

s, w, u ∈ N implicit functions of n ∈ N such that Root
(
K

(n−s)
w

)
−u ∈ Ω (n− s)

we have that

δ(n−s)
w (u− 1)− δ(n−s)

w (u) ⩾
1

f1(n)
δ(n−s)
w (u) ,

δ(n−s)
w (u)− δ(n−s)

w (u+ 1) ⩾
1

f1(n)
δ(n−s)
w (u) .

To prove it we use the following recurrence relations.
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Lemma 10.5 (Difference of bias). Let n,w, t ∈ N, we have that

δ(n)w (t− 1)− δ(n)w (t) = 2
w

n
δ
(n−1)
w−1 (t− 1) .

Proof. Recall that by definition in Lemma 3.12

δ(n)w (t) =
K

(n)
w (t)(
n
w

) .

First let us show the following recurrence relations

K(n)
w (t− 1) = K(n−1)

w (t− 1) +K
(n−1)
w−1 (t− 1) , (31)

K(n)
w (t) = K(n−1)

w (t− 1)−K
(n−1)
w−1 (t− 1) . (32)

By Lemma 3.11 for any x ∈ Snv we have

K(n)
w (v) = K(n)

w (x)

=
∑
h∈Sn

w

(−1)⟨h,x⟩.

By taking any x′ ∈ Sn−1
t−1 and constructing x = (0 || x′) ∈ Snt−1 we get, by

decomposing the previous sum on the values of h on the first position, that

K(n)
w (t− 1) = K(n−1)

w (t− 1) +K
(n−1)
w−1 (t− 1) .

Thus, Eq. (31) is showed. In the same manner, taking this time x = (1 ||x′) ∈ Snt
we get

K(n)
w (t) = K(n−1)

w (t− 1)−K
(n−1)
w−1 (t− 1) .

Thus, Eq. (32) is showed. Now, using the fact that(
n

w

)
=

n

w

(
n− 1

w − 1

)
and these recurrence relations we get

δ(n)w (t− 1)− δ(n)w (t− 1) =
2K

(n−1)
w−1 (t− 1)(

n
w

)
= 2

w

n

K
(n−1)
w−1 (t− 1)(

n−1
w−1

) .

The proof of Lemma 8.3 is now straightforward.

Proof (Proof of Lemma 8.3). Using the previous recurrence relations we have
that

δ(n−s)
w (u− 1)− δ(n−s)

w (u) = δ
(n−s−1)
w−1 (u− 1) .
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Now, using Proposition 3.14, there exists a bivariate function κ such that

δ
(n−s−1)
w−1 (u− 1) = Θ̃

(
2κ((w−1)/(n−s−1),(u−1)/(n−s−1))n

)
.

By assumption in the lemma, we have that u < Root
(
K

(n−s)
w

)
, this allows

to show that the couple ((w − 1)/(n − s − 1), (u − 1)/(n − s − 1)) belongs

to A
def
= {(ω, τ) ∈ [0, 1]2 : τ < 1/2 −

√
ω(1− ω) }. Using the fact, from

Proposition 3.14 that κ is differentiable on A along with Taylor’s theorem allows

to conclude that δ
(n−s−1)
w−1 (u− 1) = Ω̃

(
δ
(n−s)
w (u)

)
.
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