Proving modern code-based dual attacks

Charles Meyer-Hilfiger

Univ Rennes, Inria, CNRS, IRISA

charles.meyer-hilfiger@inria.fr

Abstract. In code-based cryptography, dual attacks to solve the decod-
ing problem have recently been improved. They are now competitive and
beat information set decoders for a significant regime. These recent dual
attacks, starting from Carrier et al. (Asiacrypt 2022), work by reduc-
ing decoding to an LPN problem where the secret and the noise involve
parts of the error vector coming from the decoding problem. However,
their analysis relies on some heuristics. While in the original Asiacrypt
2022 work, an LPN modeling was used to carry out the analysis, Meyer-
Hilfiger and Tillich (TCC 2023) showed that this assumption could not
be used. As a result, this TCC paper analyzed this attack with a new
technique based on Fourier theory and on modeling the weight enumera-
tor of a random linear code as a Poisson variable. The analysis the newest
and most efficient dual attack, doubleRLPN;, introduced by Carrier et al.
(Eurocrypt 2024) also relies on this technique and on this model.

Our main contribution is to devise a variant of doubleRLPN that we
can fully prove without using any model. We show that our variant has
the same performance, up to polynomial factors, as doubleRLPN. The
final algorithm and its analysis are also simpler. Our technique involves
flipping the coordinates of the noisy codeword and observing the fine
changes in the amount of noise of the related LPN problem to reconstruct
the entire error. The analysis is based on the second-order behavior of
the bias of the noise which was already used in the original analysis.
Secondly, the performance of our algorithm, as was the case for dou-
bleRLPN, heavily depends on having access to a good code along with
an efficient decoder. We instantiate this code by choosing a Cartesian
product of a constant (instead of sublinear in the original proposal) num-
ber of random linear codes. We use a decoder based on blockwise error
enumeration which was already used by Guo et al. (Asiacrypt 2014). We
show that our approach is optimal up to polynomial (instead of super-
polynomial) factors.

Note: preliminary version not ready for diffusion.

1 Introduction

The security of code-based schemes relies on the hardness of the decoding prob-
lem. We focus here on the binary variant of this problem.

Definition 1.1 (Binary Decoding problem). Let C be a binary linear code
of dimension k and length n, i.e. a linear subspace of dimension k of F5. Given C
and a noisy codeword'y = c+ e where c € C and e has Hamming weight |e| = t,
the goal is to find an error € of weight t such that'y —e € C.

For the right choice of parameters n, k, ¢ the algorithms solving this problem are

exponential in t. In particular, when the rate of the code R def k/n is constant
and the relative decoding weight 7 = t/n is a well-chosen constant, the runtime
of all algorithms is of the order 2¢(F:7)" where the constant a(R, 7) depends on
the algorithm.

The two main families of algorithms solving this problem are, on the one
hand, Information set Decoders (ISD) and, on the other hand, Dual attacks. The
ISDs are essentially improvements of Prange’s algorithm from 1962 [Pra62]. They
are the most widely studied decoders and have benefited from many improve-
ments over the years : [Ste88, [Dum89, MMT11, BJMM12, MO15, BM18| to cite
a few. Dual attacks, on the contrary, can be seen as improvements of Al-Jabri’s
statistical decoding algorithm from 2001 [Jab01]. However, this decoder was for-
gotten for a long time as it was shown to be uncompetitive to attack McEliece
cryptosystem [Ove06] and asymptotically uncompetitive [DT17] against Prange
decoder, the simplest of the ISDs. Recently, however, new dual attacks have been
developed |[CDMT22, MT23, |[CDMT24] which are now competitive and even
outperform the ISD’s for some significant regimes. More precisely, the best dual
attack [CDMT24] asymptotically outperforms the best ISD [BM18] in terms

of time complexity when decoding codes of constant rate R def k/n that are
smaller than 0.42 and when the relative error weight of the decoding problem is
the relative Gilbert-Varshamov distance, namely when ¢/n = hs (1 — R) where
he (z) = —xlogy(x) — (1 — x) logy(1 — x) is the binary entropy function. This is
the distance where the problem is the hardest and represents the distance where
we expect a unique non-planted solution to the decoding problem.

1.1 Dual attacks.

The main ingredient for dual attacks is the dual code, defined as C*+ Lef {h €
F : (h,c) = 0Vc € C } where (h,c) = >."" hic; € Fo and where h; € FY is the
7’th coordinate of h. To decode, dual attacks leverage the fact that, for a dual
vector h € C*, the inner product between h and the noisy codeword y = ¢ + e,

(y,h) = (c+e,h) = (e, h)

is more biased toward 0 as the Hamming weight of e and h, namely |e| and |h],
are low.

1.2 Modern dual attacks.

The most recent dual attacks [CDMT22, MT23, CDMT24] essentially reduce
decoding to an LPN problem which is then solved with standard solvers.

LPN problem. In essence, an LPN problem is a problem where given access to an
oracle which upon each call returns (a, (a,s) +e) € F§ x Fy where a is uniformly
random in F5 and the noise e is taken as a Bernoulli of a fixed parameter 1%5
and s is a fixed secret and the goal is to recover the secret s with as many calls

to the oracle as wanted.

Reducing decoding to LPN. The reduction presented in [CDMT22] works as
follows : by splitting the support [1, n] in two complementary parts & and
A and by computing a dual vector of low weight on the part .4, we get the
following LPN sample

S =e€ew
(y,h) = (a,s) + e where a =hgyp
e = <eJy,th>

where ez is the secret.

Strategy to recover the secret. The algorithm RLPN presented in [CDMT22]
essentially computes many such dual vectors, each yielding an LPN sample, and
tries to recover the secret e » with an LPN solver. Very roughly the LPN solver
returns the x € FL‘@‘ such that (y,h) — (x,hg) is the most biased toward 0.
Denoting by 7 the set of computed dual vectors, this was done in RLPN by
computing ezhaustively for all x € F|2=@| a score function encoding this bias

def —(x,hg
Fory () & 3 (~1)te—cha),
hes?

The algorithm then considers the x’s such that the score is big enough. One can
show that when x = eg this score is expected to be big while when x # eg4
this score is roughly expected to be 0.

Estimating the bias of the noise. A key quantity underlying the hardness
of recovering the secret e » is the bias of the noise of the LPN sample where the
bias of a Bernoulli variable X is defined as

bias (X) =P (X =0) —P (X = 1).

Say, for the sake of the discussion, that h is taken uniformly at random in
{hecC!t : |hy| =w} To estimate the bias of the noise, bias ({e_,h_4)),
it was previously assumed in [Jab01}, |Ove06, [DT17] and rigorously showed by
|[CDMT22] that it could reasonably be approximated by the bias when forgetting

the code structure, namely by the bias of (e 4, h’) where h’ , is taken uniformly
at random in the Hamming sphere of weight w (and not in its intersection with
the dual code). This is very convenient as the later bias can be expressed as a
closed-form function depending only on the weight and length of the vectors.
For that purpose let us define

507D (Jey|) & bias (e, by). (1)

which is a function of |.#7], the length of the vectors, and w, the weight of h’
and |e_y |, the weight of e 4 (suppose without loss of generality that this last
weight is known and assumed for example to be of typical weight). This function
has a simple closed form expression involving Krawtchouk polynomials. When
the context is clear we forget the dependencies and denote it more simply by

5 L 50D (e)

High level rationale of the analysis and the ideal LPN model. The
key question behind the analysis of dual attacks is the number of LPN samples
required in order the make the right decision above, i.e. to be able to recover
the secret of our LPN sample with good probability. Generally, given N LPN
samples coming from a standard LPN oracle, i.e. where each sample ({(a,s) + ¢)
are drawn independently and where a is drawn uniformly in]Flfjl and e is drawn
as a Bernoulli variable of bias € = bias (e), where the bias is defined as

bias(e) = P(e=0)—P(e=1)

then, Shannon’s first theorem states essentially that it is sufficient that N > 1/&?
to be able to recover the secret s with good probability. This secret can be
recovered by maximizing the associated score function. Of course the samples
we get are not distributed as standard LPN samples but to make the analysis
tractable [CDMT22] made an LPN modelling that the distributions of the LPN
samples obtained in the algorithm are that of standard LPN samples.

The LPN modelling along with the estimation of the bias yielded the sim-
ple condition that if N > 1/6% then the RLPN algorithm should be able to
recover e by maximizing the score function, i.e. by outputting x such that
X = arg maxy Fiy y (x). Some experimental discrepancy were noticed but they
were conjectured to be not problematic asymptotically.

Technical difficulties : the rise of the Poisson model. However, as it was
shown shortly after by [MT23| this LPN modelling really could not be used.
This comes from the fact that the h_, intervening in the noise shared a lot
of intersection of their support and that hg and h 4 are linearly related. As
a result, there exists some x # e such that their associated score function is

bigger than that associated to the secret e s, even if the condition that N > 1/§2
is met. This critically means that es cannot be recovered by maximizing the
score function as it was believed before.

To contravene this [MT23] proposed a corrected variant of RLPN. The idea
was, instead of returning the vector maximizing the score function, to rather
consider a rather small set of potential candidates for e». A vector x would be
considered as candidate for e if its associated score, Flp (x) was big enough,
superior to a well-chosen threshold. The algorithm would then test each of those
candidates x for e s by solving a smaller decoding problem. This decoding prob-
lem would return the whole error e when x = e4 and fail else. In particular, and
importantly, testing a candidate is exponentially costly, thus a key part of the
analysis was now to precisely estimate their number. This all boils down to un-
derstanding the tail distribution of the score function : given some x what is the
probability that Fp y (x) is superior to the threshold that was chosen? Interest-
ingly, the second-order behavior of this score function is known from [CDMT22].

In essence, it is shown there that if NV e |-#2|, the number of distinct dual vector
drawn, is such that N > n/§? then with probability 1 — o(1),

Fry(ew) = N§+ o(NG). 2)

We call this a second-order bound because it is derived by computing the ex-
pected value and variance of the score function and applying the Bienaymé-
Tchebychev inequality to conclude. In fact, a similar bound could be derived for
any fixed x # e to show that under the same condition and probability we
have

Fyﬂy (X) =0+ O(N(S)

Basically, both these bounds allows to show that, as long as N > n/é?, es
can be distinguished with probability 1 — o(1) from x # eg. Problematically
these bounds are completely insufficient for the purpose of [MT23]. Indeed, the
optimal parameters of this algorithm are such that || = 2 (n) and as a result
the space in which x € Fg@‘ leaves is exponentially big, thus one would need
exponential bounds, i.e. bounds that holds with probability 1 — 272" in order
to say anything non-trivial about the size of the set of candidates. Sadly, [MT23|
had to rely on some assumptions to obtain such exponential bound. Their tech-
nique relied on using the Poisson summation formula on the score function along
with the model that when C + z is a random coset of a random linear code of
length n and dimension k then the number of codewords of weight ¢ can be mod-
cled as a Poisson variable of right expected value, (7})/2"~*. This was verified
experimentally.

Under such model, and equipped with this bound, they were able to show
that the number of false candidate was polynomial and that consequently the
cost of checking the candidates was completely dominated by the other costs of
the algorithm (say by the part where we compute the dual vectors). All in all this
showed that even though the LPN model was not valid, the overall additional cost
incurred by this structure was of polynomial nature. Later, [CDMT24] improved

this RLPN algorithm by using an additional reduction from sparse LPN to plain
LPN and its analysis relied on a similar estimation of a number of candidates.
This estimation relied on a similar Poisson model and it was showed that for
the parameters of interest in the article this number was exponential. However,
again, it was sufficiently low so that the cost of checking these candidates never
dominated the complexity of the other steps of the algorithm.

1.3 Contributions

— Our main contribution is to devise a variant of double-RLPN that we can
fully prove without using any model whatsoever up to rate R < 0.5. We
show that our variant has the same performance, up to polynomial factors,
as the original double-RLPN algorithm. In practice our result holds for higher
rates but then depends on the parameters of the algorithm but in any cases,
R < 0.5 already encompasses the rate regime where the best dual attacks is
currently known to beat the best ISD’s.

— Secondly, as we will recall later, the performance of our algorithm, as it was
the case for the doubleRLPN, heavily depends on having access to a good
code along with an efficient decoder. We instantiate this code by choosing
cartesian product of a constant (instead of sublinear in the original proposal
of [CDMT24]) number of random linear codes. We use a syndrome decoder
based on blockwise error enumeration that was already used in [GJL14].
We show overall that our algorithm, when using this code, looses only a
polynomial factor (instead of superpolynomial) compared to the ideal case
where we would suppose that we have access to a random linear code that
we could decode efficiently.

1.4 Our technique

We give the idea of our provable variant. Our goal here is to make a variant whose
proof relies only on the tractable second-order bounds on the score function given
previously. We focus here on giving the idea of a fully provable variant of RLPN
only, the fully provable variant of double-RLPN will follow a similar rationale.
On a very high level our method is as follows : instead of computing one LPN
problem and an associated score function, we compute |.4#'| + 1 LPN problems
and associated score function. This will allow us to make for each x € IF‘Q‘@‘ a
guess g (x) for the value of e_y, in polynomial time. The two crucial point will
be that i) a guess can be tested in polynomial and ii) we can show that on the
secret x = ey the guess is valid, namely g (es) = e_y with good probability.

Base observation. Our base observation is that we can change the amount
of noise of the LPN samples by flipping the coordinates of the received noisy
codeword y that intervene in the noise of the LPN samples. More precisely, by
computing

) I that ((0) vy, and (“’)) = ;
y such tha y"),=Y» an YU, yv +§

one can readily see that for a dual vector h € C of low weight on .4~ we have
the "flipped” LPN sample

<y(i)7h> =(ez,h)+ (ey +&,hy)

which is more or less noisy depending on the weight of e_y +-¢;. Said differently, if
(e_y); = 1 then the weight of e 4 +¢&; increases and thus the "flipped” score func-
tion evaluated on the secret e », namely F» ,) (e2) = Zhe%(fl)@ﬂﬁi’hk”,
is expected to increase.

Observation 1.1.

If (ex);, =1 we expect that Fy yi) (ex) > Fry(es).

The algorithm. On a high level our idea is as follows : instead of computing
one score function Fue y, we will also compute the flipped scores Fp) for
i € [1, |-4]]. Computing these additional scores allows us to make for each
X €]F|29| a guess ¢ (x) for the value of e, in polynomial time. This guess is
given as follows:

g(x), <1 If Fy g (x) > Foy (x).

Following Observation [I.1] it is readily seen that when x = e» we expect that
the guess is right, namely that g(x) = e . Now, the key remark we use is
that in any cases, we can test a guess in polynomial time by checking that x
concatenated with the associated guess g(x) is a solution to the original decoding

problem (by making sure it is of weight ¢ and that, when we remove y the result

is in C). As such our algorithm simply go through all x € Flf‘

and check this guess.

, make a guess

Proving our algorithm. Proving our algorithm only relies on proving that
when x = ey then the guess is good with high probability. It is clear here
that the second order concentration bounds given in Eq. are sufficient to
prove this. Indeed, for each position ¢ we compare only two distributions, the
one related to e_y; being 0 and the one for e 4; being 1. Of course, we must apply
these bounds for each i € [1, n], but this only incurs a polynomial loss compared
to stronger bounds. We make no claim whatsoever regarding the other cases
corresponding to x # ez as they will be naturally discarded by our checking
phase.

Our variant has the same performance as the original algorithm. Last,
we argue that in fact our algorithm have the same performance, up to polynomial
factors, than the original algorithm. One could argue that we have somehow
lost in performance since the distribution we are trying to distinguish now are
closer than the original distributions in double-RLPN. This is essentially not the

case. In RLPN the distributions being distinguished had either expected value
E (Fuy (ew)) = NS or expected value E (Fpy (x)) = 0 when x # ep. In
our provable variant the distribution that we compare distributions that have
expected values respectively

E(Fyy(ex)) = N6 with 6% 504D ()
E (Fyyo (e2)) = N§&' with ¢ et 50D <u+ (_1)<ew>i)

and where we recall that 60 () was defined in Eq. . The key point is that
we can show that in our regime of interest (i.e. in the non-oscillatory regime of
Krawtchouk polynomials) then 6’ — ¢ is polynomially relatable to §, namely we

can show that)

> ——0.

poly (n)
This shows that our algorithm solves the decoding problem under a mild poly-
nomial strengthening of the original condition, namely it requires that N >

poly (n) /82

§ —

2 Acknowledgements

The author would like to warmly thank Jean-Pierre Tillich for his proofreading
and comments on the counterpart of this paper that I wrote as a part of my PhD
manuscript. The author is funded by pepr PQ-TLS. One part of this work was
done in the Cosmiq team, Inria Paris and the other part in the Capsule team,
Irisa, Rennes.

3 Notation and Preliminaries

3.1 Notation

Set, vector and matrix notation. The set [a, b] is closed set of reals between
a and b. [a,b] indicates the closed integer interval between a and b. Fy is the
binary field. |E| is the cardinality of a finite set E. Vectors are indicated by
lowercase bold letters x and matrices by uppercase bold letters A. For a vector
x = (2;)1<i<n and & C [1, n], xs is given by xs = (2;)icr and xT is the
transpose of x and |x| stands for the Hamming weight of x. Given two vectors
x € F% and y € F3, their canonical inner product in Fy is denoted by (x,y) =
St x;y;. We denote by (x || y) € F3" the concatenation of x and y. For a
matrix A € IF];X" and & C [1, n], As is the matrix A where we kept only the
columns whose indices are in .#. rank (A) is the rank of A. I,, is the identity

matrix with n rows and columns. Oy, € IFSX” is the all zero matrix. 0,, € Fy

is the null vector. S} o {x € Fy : |x| = w} is the Hamming sphere of weight

w of F4§. 14 is the indicator function of the set A, namely 14 (x) =1ifxz € A
otherwise 0.

Probability. We denote respectively by E (X) and Var (X) the expected value
and variance of a random variable X. We will use Bienaymé—Chebyshev inequal-
ity given as follows.

Proposition 3.1 (Bienaymé—Chebyshev inequality). For any random vari-
able X and any o > 0 we have
< Var (X)

P(X —E(X) >0) < =0

We will also use the union bound.

Proposition 3.2 (Union bound). Given N event (E;)iep, Ny we have that

P (Ufil Ez) < Z?:l P (EZ)

When D is a probability distribution we write that X ~ D to specify that X is
distributed according to D. If A is a set, we denote by U (A) the uniform distri-
bution over A. We denote by Ber (p) is the Bernouilli distribution of parameter
p. By definition if X ~ Ber (p) then X take value in Fy and P (X =1) = p. We
define the bias of a binary random variable X as

bias (X) L P (X =0)—P (X =1).

In particular if X ~ Ber (152) then bias (X) =e.

Lemma 3.3 (Pilling up lemma). If X; ~ Ber (1_%) and X5 ~ Ber (1_%)
then bias (X1 + X2) = £1€2.

Fourier Transform. Let f : F§ — R be a function. We define its Fourier
transform f:F5 — R as

fx) =3 f@(=n> vxeF;.

acFy

We call any algorithm computing this Fourier transform in time O(n2") a Fast
Fourier transform.

Landau and asymptotic notation. For real valued functions defined over R

or N we define o), O(), £2(), © (), in the usual way. We write that f = w(g)
when f dominates g asymptotically that is when lim % = oo0. We use the
Tr—0o0

less common notation O(), where f = O(g) means that f(z) = O (a*g(z)) for
some constant k.

3.2 Linear codes and decoding problem

Definition 3.4 (Binary linear code). A binary linear code C of length n and
dimension k is a linear subspace of F§ of dimension k. We say that C is an [n, k]
linear code.

We call R = % the rate of the code. We denote by dim (C) the dimension of

C as a linear space. We say that G € IF’;X" is a generator matrix of C if C =

{mG : m € F%} and that H € FY""*" is a parity-check matrix of C if
C={ceFy : Hc™ =0}.

Definition 3.5 (Dual code). For any binary linear code C of length we denote
the dual code by C*+ 1 {h €F%:{(c,h) =0, Vc eC}.

We have that if C is an [n, k]-linear code then C* is an [n,n — k|-linear code
and that if G is a generator matrix of C then G is a parity-check matrix of C*.
We will denote by Cz the punctured code obtained from C by keeping only the
positions in Z, i.e. :

Cz={cr:ceC}.
Two of the most standard distributions on linear codes are given as follows.

Definition 3.6 (Distribution on linear codes). We denote by Ug (n, k)
the distribution on linear codes obtained by taking a generator matriz of the code
uniformly at random in IF];X”. We denote by Uy (n, k) the distribution on linear
code(s obgamed by taking a parity-check matriz of the code uniformly at random
in TSR

In this work we will focus on designing an algorithm solving the following
average binary decoding problem.

Definition 3.7 (Binary Decoding problem DPg (n,k,t)). Given (G,y)
where G is a matriz taken uniformly at random in ngn and y = mG + e
where m is taken uniformly at random in FX and e is taken uniformly at ran-
dom among vectors of Fy of Hamming weight t, the goal is to output an error
vector € of Hamming weight t such that y.

The so called Gilbert-Varshamov distance is an importance quantity which rep-
resents essentially the decoding distance where we expect a unique non-planted
solution to the decoding problem.

Definition 3.8 (Gilbert-Varshamov distance). Let n,k € N be such that
k < n. We define the Gilbert-Varshamov distance dgv (n, k) as the largest inte-

ger such that
dG\/(n, k)

() e

=0

The above could be proved using some slight variant of the following standard
lemma.

10

Lemma 3.9 (Probability of belonging to a code). Let C ~ Uy (n, k) and
let c € F§ \ { O} be a fized vector. We have that

1
on—k’

P(ceC) =

If furthermore d € F3 \ { 0} is a fized vector such that d # ¢ we have that

2n—k

1 2
]P(ceC,deC)<<) .

3.3 Krawtchouk polynomial

We recall here some properties about Krawtchouk polynomial that will be useful
in the article.

Definition 3.10. (Krawtchouk polynomial) We define the Krawtchouk polyno-
mial K" of degree w and of order n as K§" (X) 1 S (=1) (X) ("_X).

J=0 J/\w—=j
The following fact is well known, it gives an alternate expression of the Krawtchouk
polynomial (see for instance [vL99, Lemma 5.3.1]) :

Lemma 3.11. For any a € Fy,
E () =T ()= Y (-1, (3)
yEFL:|y=w

Equipped with this lemma it is easy to see that Krawtchouk polynomials are
related to the bias of the inner product of two random binary vectors.

Lemma 3.12 (Bias of an inner product). Let e € S be a fized vector and
let h be taken uniformly at random in S,,. We have that

bias ({e, h)) = 6(") (t)
where

w

o 0 ke 0/ (")

3.4 Asymptotic expansion

To simplify our proofs we will often use the following standard asymptotic ex-
pansion of the binomial coefficient.

Proposition 3.13. There exists a positive poly-bounded function f such that
for any n,t € N such that t < n we have

n

where h(x) = —xlogy(x) — (1 — x)logy(1 — x) is the binary entropy function.
Furthermore, the binary entropy function is differentiable in |0, 1].

11

We will also use this standard result about the asymptotic expansion of Krawtchouk
polynomials.

Proposition 3.14 (About the asymptotic expansion of Krawtchouk poly-
nomials). Let us define A d:ef{ (w, 7)€10,1? : 7 < 1/2—\/w(l —w)}. There

exists a positive poly-bounded function f and a bivariate function k (w, T) that is
differentiable on A and that is such that for any w,t,n such thatt < Root (K&"U

we have

f(ln) 2;@(111/n, t/n)n < qu;n) (t) < f(n)zn(w/n, t/n)n

where the delimitation of the root region is defined as

Root (KQ(U")> i n/2 — /w(n — w) (4)

Proof. This is a direct corollary of [KS21, Section 2.2, point 6.] together with
[KS21) Section 2.1.2].

4 Essential on the reduction of double-RLPN

Our provable variant of double-RLPN reuses a major part of the original double-
RLPN algorithm [CDMT24]. Recall that our goal here is to solve the following
decoding problem, namely, given an [n, k]-linear code C and a noisy codeword
y = c+ e where ¢ € C and e € §7*, the goal is to recover e.

We recall here the 4 steps of the dual attack double-RLPN to solve this prob-
lem.

Choose at random % and .4 two complementary subsets of [1, n]
Compute a list of LPN samples where the secret is related to eg.
Compute a score function associated to the LPN samples that encodes how
likely a vector is the secret of the LPN samples.

4. Somehow recover eg using the values of the score function then recover the
rest of the error e_y .

W

Those steps are iterated as certain number Njie, of times until a bet on the weight
of the error on the part & and .4 is verified, say |e | = u. The rationale of
step 4. is that it succeed in recovering e when this bet is verified, else it fails.
We discuss in detail of step 2. and step 3. in Section and Section
respectively. These steps represent the core of double-RLPN and will be used by
our provable variant. We discuss quickly of step 4. as well as the original analysis
of double-RLPN to recall the key quantities that will also appear in our analysis.

4.1 Computing a list of LPN samples

In this section we suppose that two complementary subsets & and .4 of [1, n]
such that
| 2| = s, and |[A]=n—s.

are given and explain how double-RLPN computes some LPN samples whose
secret is related to eg.

12

The reduction of [CDMT24]. The reduction starts from the base remark
from |[CDMT?22] that a dual vectors h of small weight on .4, directly yield an
LPN sample
<y7 h> = <C + evh> = <e3;”7 h@) + <e‘/V7 h/V> .

Then, [CDMT24] further noticed that the dimension of the LPN samples could
be reduced using a technique from |[GJL14], at the cost of a mild increase of noise
by using the sparsity of the secret e 4. The reduction works by considering an
[$, kaux)-linear auxiliary code C,ux and decoding hg onto Caux, i.e. , by finding
Caux € Caux and an error e,y of low weight t,,x such that

hg@ = Caux T €aux |eaux| = taux-

Now considering G, € F5*=*** a generator matrix of Cayy, there exists a unique
mgy,x € F’;"‘“" such that caux = Maux G, - This allows to get the following LPN
sample (Mayux, (¥, h)) where

s =epGJ,, € Fhw
(y,hy =(a,s) + e where a = My (5)

<eauxve9> + <eJV7 hJV> .

Definition 4.1 (List of LPN samples from a list of decoded dual vec-
tors.). Given a set of decoded dual vectors # C { (h,eanx) € C+ x Sf

ho + eaux € Caux} and G, a generator matriz of an [s, kayx|-linear code Caux
and a word y € F} we define the list of LPN samples as

def

ﬁ(%, Yy, Gauxa @) = (mauxa <y’h>)(h,eaux)€%

where for each (h,e,ux) € F, the associated myy,y is the unique vector of]F’QC"‘“"
such that m, G, . + €.ux = ho.

aux

Note that £ (7, G, ¥) can be computed with standard linear algebra in
time and memory poly (n) |7|. The rest of Section is dedicated to recalling
precisely how the set of decoded dual vectors is computed.

About the computation of low weight dual vectors We recall here the
standard fact that computing a vector h € C* of small weight on .4 reduces to
computing a vector of weight w of (CJ-) - and lifting it uniquely onto c+.

Definition 4.2 (Information set and lifting). A subset .# of [1, n] is an
information set of a linear code D if for any x € Dy there exists a unique
codeword d € D such that d y = x. We define

Lift (D, 7, x) Y 4 where d is the unique d € D such that d 5 = x.

We call it the lift of x into D.

13

This is possible only if .4 if an information set of C*, which is the case with
high probability since the condition that |4 e —s>n—kare naturally
verified by the double-RLPN parameters. Checking if .4 is an information set of
Ct can be done in polynomial time by checking that rank (G) = || where
G is a generator matrix of C. Lifting h_4 € (CJ-)JV can be done in polynomial
time with a gaussian elimination to find a generator matrix G’ of C of the form

G = [OIS IA{} and by defining hg <+ h_,RT.
SXS

With these reductions presented We describe next two algorithms: the first
creates couples (h,e,ux) of decoded dual vectors and second transforms these
couples into the samples (Mayuy, (¥, h)).

The procedure computing the decoded dual vectors. The procedure
computing the LPN samples starts by calling a procedure DECODED-DUAL-
VECTORS(C, &, 4, F) that we describe here. F is the family of [s, kaux]-linear
code that will be used for the reduction. This procedure outputs a set 7 com-
posed of couples (h, e,ux) as described previously and a generator matrix G
of the code that was used for the reduction.

The procedure starts by calling a procedure COMPUTE-SMALL-CODEWORD((CL) w)

returning a subset of { h_y € (CL)W ¢ |h 4| = w}. Then each of these vectors
is lifted into a vector of C* to form a subset # of {h € J# : |h 4| =w }. Then
the [s, kaux)-linear code C,ux is drawn uniformly at random from F this fam-
ily comes equipped with a list decoder DECODE-AUXILARY (Caux, @, taux) that
returns a subset of { eyux € o L AT €aux € Caux }- For each h, we call
DECODE-AUXILARY (Caux, h o, taux) and happens the couple (h,e,ux) to the set
S of decoded dual vectors.

N i

Algorithm 1

Name: DECODED-DUAL-VECTOR-DOUBLE-RLPN(C, &, .4, F)
1: Continue if ./ is an information set of C*+
2: #.y + COMPUTE-SMALL-CODEWORD((C™)

C— : |hy|=w}

s W) > Returns a subset of { h €

3: %« {heCt : h=Lift(D, £, x)}

4: Cov, Gauy o F

5: 0

6: for he # do

7 & < DECODE-AUXILARY (Caux, h g)> Returns a set of error of small weight
€aux € St, .. S-thop — eaux € Caux

8: for eaux € € do

9: L %.APPEND((h, eaux)) > The set of decoded dual vectors

10: return (7, G.ux)

14

4.2 Computing the score function

The main quantity intervening in modern dual attacks is the score function of
the related LPN sample. It basically encodes how likely a vector z is the secret
s of the LPN problem.

Definition 4.3 (Score function). Let L be a list of LPN samples of the form
(a,b) € Fh*x x Fy. For all z € Fs** we define the score function as

F(a) € 30 (1),

(a,b)eL

Intuitively this score is expected to be big when z is the secret of the LPN
problem. In particular, in double-RLPN, the score function evaluated on the
secret e G . (see Eq.) gives the following.

aux

Lemma 4.4. We have that

Fr(epGly) © 30 (-feoemitlonhs)
(h,eaux) €

where L d:efﬁ (0, G, Y) is defined in Definition .

The procedure double-RLPN Computes this score function using a Fast Fourier
Transform based approach which was already used in RLPN and more generally
was introduced by [LF06] to seed-up LPN solvers. We refer to the previous
article for more details. The procedure is described in SCORE-FUNCTION(L) and
is detailed in Algorithm

Algorithm 2

Name: SCORE-FUNCTION(L)

1: for a € F5*»* do

2: L f[’ (I‘) = Z(a,leﬁ:a:r(_l)b

3: Fr « FFT(fc) » FFT(f) is a Fast Fourier transform algorithm that outputs the
Fourier Transform f of f.

4: return F,

Proposition 4.5. Given a list of LPN samples L, Algorithm [g returns Fr in
time and memory respectively

Time = poly (n) (|£] + 2k““") , Memory = poly (n) (|£] + 2’“%*)

15

4.3 Step 4. Recovering e

We do not describe in detail this step because it will not be useful in our provable
variant ou double-RLPN. We give the basic outline just for the sake of comparison.
At this stage of the double-RLPN algorithm, the set of decoded dual vectors 7 is
computed as well as the associated score function F» y. Recovering e was done
by first considering a set of candidates for the secret exG] . € Fga“" of the
obtained LPN problem by filtering out vectors whose score were low, namely by
considering the set of candidates { z € IFS““" : Fyy (z) > T} where T is a well-
chosen threshold. Each candidate is then tested by solving some smaller decoding
problems which returns e if the considered candidate is such that z = e»GJ,,.
Testing a candidate is exponentially costly.

4.4 Key quantity of the analysis of double-RLPN

We recall here the basic quantities intervening in the analysis of double-RLPN
and that of our provable variant. This section allows the reader to interpret the
quantities that will appear in the main theorem of this paper and that we state
in the next section.

The analysis of double-RLPN was done when C is chosen by taking its gen-
erator matrix uniformly at random in IE";X" and by supposing that the set #
of computed dual vectors is the whole set { h € C+ : |h 4| = w}. So that
the quantities are well-defined we condition all the probabilities by the event
that .4 is an information set of C*. To simplify the analysis the code C,ux Was
taken as a uniformly random [s, kaux]-linear codes equipped with a genie-aided
list decoder, namely by supposing that the DECODE(C,ux, h o, taux) returns the
set { eaux € 87 ¢ €uux — he € Caux}. All in all this means that the set of

aux

decoded dual vectors 77 is comprised of all possible couples

A ={ (h, eque) € C x 8¢

aux

: |hy| =w and hg + e,ux € Caux }-

There are two relevant quantities to the analysis : the average number of
LPN samples and the bias of the noise of the samples.

Number of available LPN samples. First, one could show that the expected
number of samples is

E(I£]) = E (17])

(") i)
2kfs Qkam,x
()0

2k_ kanx

~—

The reader interested in a rigorous proof can see this statement as a direct
corollary of the later stated Proposition More roughly, this equality comes
from the fact that i) by construction, the expected number of dual vectors of

16

C weight w on 4 is given by E ((CL)WHSS,_S) = (".°)/2F"* and ii) the
expected number of error returned by the auxiliary list decoder for each hg is

E ((Coe +h2) 187, = () /2o

aux aux

Bias of the LPN samples. The second key quantity is the bias of the noise
(es,h y)+ (ew, €aux) of the LPN samples. This quantity obviously depends on
the weight of the vectors. We recall that by construction

|hJV| =w, |eaux| = taux
and that a bet is made on the weight of the error on each subpart, namely that
ley|=u, |ew|l=t—u.

Forgetting about the fact that all these vectors come from a decoding problem
we can easily estimate the bias of this noise.

Lemma 4.6. Bias of the noise by forgetting about the code structure. Let &
and A two complementary subset of [1, n] of size s and n — s respectively. Let
e € 8 such that lew| =u and |e_y| =t — u. Then

bias (e, hy) + (€2, €aux)) = 60 (u) 6 (t — u)

aux

where h_y is taken uniformly at random in S, ~° and eaux is taken uniformly at
random in S}

taux

Proof. This is direct consequence of the Pilling-Up lemma and Lemma [3.12]

Of course, one cannot completely forget this code structure but ultimately
|CDMT24| Proposition 2] showed with a second-order technique that under some

conditions, the quantity 6&”75) (u) ét(jzx (t — u) was with good probability a good
approximation of the bias of the noise of the LPN samples.

Rationale behind the attack. Under the flawed [MT23,|[CDMT24] LPN mod-
elling one would expect to require that the number N of LPN samples is superior
to n/e? in order to be able to recover the secret of an LPN problem with a bias
of noise €. In our case this would roughly be that

(065 "

k_]faux 2
? (55 oz, (= w)

to recover the secret e 2 GJ,,,. Of course because this modelling is flawed [CDMT24]
had to use a model [CDMT24] Model 1] in order to carry out the analysis. This
model was used to bound the size of the number of candidates in Step 4., see

Section

17

5 Results and main theorem

In this section we state the main result of this paper. We state a theorem giving
the performance of our provable variant of double-RLPN, we will describe in
detail this provable variant in the next Section [} For simplicity, we state, as it
was the case for double-RLPN, our theorem in the case where we suppose that
we have access to a procedure that computes all the vectors of (C*) . of weight
w. To make the quantities appearing in our theorem more intelligible, the reader
can refer to the previous Section We mark with a ”*” the new constraints
that did not appear in the original paper [CDMT24, Proposition 9].

Theorem 5.1. There exists a positive poly-bounded function f such that for
any k,t, s, kaux, taux, W, u € N implicit functions of a parameter n € N and any
procedure COMPUTE-SMALL-CODEWORDS that are such that

1. (Computing all the whole set of dual vectors {h € C* : |h | =w})
P (COMPUTE-SMALL—CODEWORDS(D) # DﬂS{}fs) €o(1),
where D is taken by choosing its parity-check matriz uniformly at random in

ng—s) X (n—s)]

2. (Main constraint that we have enough dual vectors)

n—s s s/kaux
‘ (65 (w6 (- w)

(Decoding the auziliary code below Gilbert- Varshamov) (t:ux J25 ke € O(1),
*(Linear scaling of the parameters) s/kaux € O(1),
(A is an information set of the code C) n —s —k € w (1),

*(Small technical constraints) Root (Kgb_s)) —u € 2(n—s) and Root (ng\?)() -
(t—wu) € R(s) and k —s €w(l) andn — k € w(1)

S G o

then there exists an algorithm solving DPa (n, k,t) with probability 1 — o(1) in
time and memory

Time = 6(()) (Teq + 2ka‘”‘)> , Memory = O((Meq + 2F=))

() ("

where Toq and Meq are respectively time and memory complexity of one call to the
procedure COMPUTE-SMALL-CODEWORDS(D) and where we recall that s (t) is
defined in Lemma|3.14 and Root (Kq(vn)) is defined in Eq. . In particular the

said algorithm is the one defined later in Deﬁnition by taking b def [8/kaux |
along with a goood choice for Niter-

18

Next we make a comparison with [CDMT24, Proposition 9] giving the perfor-
mance of double-RLPN and the theorem we have just stated.

— The proposition giving the performance of the algorithm in [CDMT24, Propo-
sition 9] requires the use of the Poisson model [CDMT24 Model 1] whereas
our theorem do not require any model.

— |CDMT24, Proposition 9] the complexity is in 2Fawx 4 T, 200" 4 Tpye0 Where
Teneck is an additional term for checking false candidates and the 20(1) ig the
cost of one call to the auxiliary decoder. But recall that in practice [CDMT24]
verified that Tiheck never dominates the complexity.

— Our provable variant will require that .4 is an information set of C. So
that this happens with good probability we had to add the constraint on
the parameters that n — s — k € w (1) where we recall that n — s = |./].
However, because s < k we have that this is unconditionally true for codes of

rate R % & /n smaller than 0.5. We believe we could remove this constraint
but at the cost of a slightly more complex algorithm.

— The constraint that s/kaux € O(1) comes from the choice we made for the
auxiliary code Chux : it is the condition required for i) the code to be op-
timal and ii) that we can decode it in polynomial time. In practice for the
parameters regime we are interested in this article, namely k& = © (n) and
t = O (n), the optimal values of the parameters (i.e. matching the main
constraint and minimizing the complexity) always verify this condition. In
particular this is the case for all the given parameters of [CDMT24]. We be-
lieve that this condition could be removed by using Polar codes as suggested
in [Car20, (CDMT24], but then the proof would not be as simple.

— In [CDMT24} Proposition 9] the main constraint needed for the proof under
the model was that

(6D nt
P © (n=9) () 505 ?
(607 w2 (t—w))

Here we have some other poly-bounded function f(n®) instead of n®. The
point is that, regardless of the polynomial, it is easy to create from a set
of parameter verifying constraint given by Eq. @ a new set of parameters
verifying this new constraint by increasing w only slightly by a O(log,(n))
term. This could rigorously be shown by computing the derivative in w of

(6)

: , (")) (5(n=s) 1\ 5(9) 2
the asymptotic expansion of 5zt (6 (u) 6y (t —u)
— We added some small additional constraints (Point 6. in the theorem) to
make our statement rigorous. In practice those are always verified for non-
degenerate parameters. And, in particular, they are verified for all the asymp-

totic parameter datasets given in [CDMT24].

In particular, any complexity claims about double-RLPN made using [CDMT24,
Proposition 9] under the Poisson model [CDMT24, Model 1] are provably achieved
(by an algorithm that we describe next), up to polynomial factors, when the rate

of the code R %' k/n is smaller than 0.5.

19

6 Fully provable double-RLPN

Let us now describe our provable variant of double-RLPN. Our algorithm retakes
the main loop of double-RLPN by choosing at random two complementary sub-
sets & and 4 and the main ingredient we reuse are the procedures describes
in ?? The procedure DOUBLE-RLPN-SCOREFUNCTION which given a vector y
computes the double-RLPN score function associated to the LPN problem gener-
ated by y (and some given subpart & and .4 of the support).

With these ingredients we build a GUESSING-e 4 (C,y, &, /) that will for
each vector in the secret space of the underlying LPN problem make a guess
for the value of e_y by calling the previous procedure multiple times. We then
build a checking procedure which will check each guess for e 4 and will try
to reconstruct the whole error vector e. Importantly each guess is tested in
polynomial time.

Algorithm 3 Provable-double-RLPN algorithm

Name: PROVABLE-DOUBLE-RLPN(C,y,t)
Input: C a linear code of length n, y =c+e € Fy withc € C and |e| =t
Parameter: s, w,u and Niter
1: while i =1... Njer do
3”&{:@ C 1, n] : |2| =s} > Hope that e y | = u
N 1, n]\ &
G <+ GUESsING-e_x (C,y, &, N)
e + CHECKING-e 4 (G, C,y, &, N ,t)
if e # 1 then
| returne

6.1 Guessing phase

Recalling that Fg"‘“" the space in which lives the secret of the underlying LPN
problem e»G,,, our goal here is for cach z € F5*> to make a guess on the
value of e 4, we make this guess bit by bit. We will exploit the fact that when
z is secret of our LPN samples, namely e »G] . we have that

Lemma 6.1.

Fﬁi”, y (e.@G;ux) = Z (_1)<erﬂﬁhlﬂ)+<e‘@7eaux>'
(h, eaux)€S#

Observe that flipping the positions of the received word y is exactly flipping the
positions of the error vector e. Thus, we have an impact on the score function
by flipping the i’th bit of y in 4.

Definition 6.2. For any i € [1, n] we denote by y*) € F} the vector defined

as (y(i))y d:efygz and (y(i))w aef Yo + & where & € F37° is the vector which

s zero everywhere except on its i 'th coordinate.

20

Clearly we have that

Fﬁ7y(i) (exrGI..) = Z (_1)(ek/v+£¢,hw>+<ep},eaux>'
(h7 Qaux)Ejg7

It is readily seen that this last quantity is expected to be bigger than original
Fyy (e2G],) if we flipped an erroneous position, namely if (e 4), = 1. This
is our decision rationale for our guess on e_y .

Algorithm We compute for each z €]Fg“*“" and associated guess for e 4, call
it G (z) € F5~° by successively flipping the bits of y as described above. More
precisely the #’th bit of G (z) is determined by computing a reference score
function Flp y and computing the flipped score function F,) and comparing
them.

Definition 6.3. For eachx € Fy* we denote by G (z) the vector of Fy~* whose

1’th coordinate is equal to

a (Z)Z d:e)f 1 if ij’y(i) (Z) >Fapy (Z) .
0 else.
We call G (z) the guess for e_y related to z.

We then store these guesses in a set G = {(z, G (z)) : z € Fi*>} and outputs
it.

Algorithm 4

Name: GUESSING-e_y (C,y, P, N)
Input: C,y, &, NV
1: J# < DECODED-DUAL-VECTOR-DOUBLE-RLPN(C, £, /")

2: Fyp.y < SCORE-FUNCTION(y, J¢) > Reference value of the score function
3: whilet=1...n—s do

4: y(i) —y+&<u > This flips the i’th bit of e x
5: L F(f?’y(i) — SCOR.E—FUNCTION(y(i), H) > Comparative score function
6: Compute G (z) (Definition [6.3)) for all z € Fhx

7: return {(z, G (z)) : z € F3***}

6.2 Checking phase

Here we want to check each guess for e 4. It is important that each guess is
checked in polynomial time as we range over the whole secret space IF’;“"‘, and
we want this step to no dominate in front of the FFT say. Note that in the case
of double-RLPN the secret of the LPN samples is not e but rather some linear
combination of e », say e»G],, where G, is the generator matrix of the code
used in the reduction from sparse — LPN to plain — LPN. Consequently, given z

21

a candidate for e»G],, and an associated guess for e s we cannot easily verify
if this couple is indeed the solution to our decoding problem as we could have
done if we had access to eg. Notably, trying to recover e from e»G],,, would
be exponentially harmful in here as we observe that in practice our double-RLPN
optimal parameters are such that this compression of es is extremely lossy,
namely the Hamming sphere in which ez lives is exponentially larger than this
arrival space. We believe there are workarounds for this issue but make rather

use the following stategy to keep the algorithm simple.

The procedure. Note that if .4 is an information set of the code C then we
can easily check a guess for e_y. Indeed, a guess z for e 4 can be verified in
polynomial time by simply computing the unique codeword c of C which is such
that ¢y = y_» —z and then check that y — ¢ is of right Hamming weight ¢ (the

weight of the error). Importantly, denoting by s Lef | 22|, the setting where 4" is
an information set with good probability, is when

n—s>k

which are trivially verified by all our parameters when the rate R of the code
C is smaller than 0.5 as s < k. This is more than enough to account for the
interesting parameters for which we beat the ISD’s. The checking algorithm is
described in Algorithm

Algorithm 5

Name: CHECKING-e 4 (G,C,y, &, N)
Input: G,C,y, &, NV
Parameter: ¢
1: while efj) €Gdo
Cxy <Y — e(JzV)

C(—Lift(c, N, CJV)
if [y —c| =t then

e+—y—c

return e

It is readily seen that we have that If the guess for e s related to the secret
e»GT . is good, namely if G (e»G]) = e 4 and if .4 contains an information

set of C then CHECKING-e_4 outputs e.

7 Instantiation with a juxtaposition codes
Goal. Now, let us instantiate our algorithm with a specific family of [s, kaux]-

linear code F that are used in the reduction from sparse LPN to plain LPN : the
so called auxiliary code C,yuyx is drawn uniformly at random in F in Algorithm

22

The codes and its decoder must be as efficient as possible : given hg one wants
that the decoder returns a codeword c,ux € Caux at small distance t,,x possible
while having a small decoding time the decoding distance, i.e. the weight of h g —
Caux, crucially intervene in the noise of the generated LPN samples. Information
theory tells us that the best we could hope the decoding distance t,.x equals
to the Gilbert-Varshamov distance dgyv (8, kaux) for a proportion 1 — o(1) of the
word of the space F5.

Codes/Decoder used in [CDMT24]. Forgetting about the question of ac-
tually having a decoder running in polynomial time, this could be achieved with
a random code. In fact, in double-RLPN the analysis was carried out when Cayuyx
is taken uniformly at random among [s, kaux]-linear codes and it was supposed
to be equipped with an ideal genie-aided decoder that finds all the codeword at
distance t,ux and where each codeword found in time poly (n). In [CDMT?24, | it
was also proposed to use a Cartesian product (what we call juxtaposition codes)
of b = s/log,(s) smaller random linear codes Coux = CH) x C(?) x .- x C®) | each
of length s/log,(s) and dimension k,yuyx/logs(s).

Definition 7.1 (Juxtaposition code). We define the set of juxtaposition
codes with b blocks, and of length n and dimension k, namely €& [b, n, k], as
the set of linear codes C such that there exists b linear codes, (C(i))ie[[l’ p] that
are such that for every i € [1, b], C% is an [n®, kD]-linear code and such that

C=0CM «c@ ... xc®

where we denote implicitly (in b), for each integer v € N its i ’th part as:

(7)

o) d:ef{Lv/bj +1 4fi<(v mod d)
lv/b] else

Definition 7.2. When the context is clear we will implicitly denote the i’th

. . N d
part of a vector x € Fy relative to the support given by n by O X g where

s [[Z;;ll nl9), 22‘:1 n]. In the same manner, given C € & [b, n, k] we

denote by C9) its i’th constituent code.

Decoding h is done by enumerating independently the codewords of each
code and decode independently on each part. It was shown overall that this
incurs only a loss of order 2°(™) in double-RLPN compared to the ideal case
where a random code with a genie-aided decoder is used.

The decoder we use here. Here we use the base observation that even if C,, is
a random [s, kayx|-linear code, it can be decoded at distance t,ux in polynomial
amortized time as long as number total number of calls, to the decoders is
superior to the number of admissible errors of good weight e,ux € S, namely
(t"‘s“"). In this case one can simply create a syndrome table { (Haux€aux, €aux) :

23

€aux € S} once and for all and, when one wants to decode a € Fj onto
C.ux at distance t,.y, the decoders look up the table and returns the e,.y that
are such that H,y,ca = Haux€aux. This idea can be extended by considering
a juxtaposition code with b block and decoding each code independently at
distance t,ux/b with this error enumeration technique, this decoder was already
used in |GJL14]. Basically the decoder returns the following set of errors.

Definition 7.3 (Set of admissible errors). Letb,n, k,t € N. Let C € &% [b, n, k]
be a juztaposition code of length n and dimension k. Let'y € FY, we define the
set of admissible errors as

Ded™" (C,y,1t) & {ee S : ’e(i) =t® and y@ — e e W vie 1, 0]}

We have in particular that
Ded™ (C,y,t) C{e€ S} : e+y eC}.

This is particularly useful when one have to decode an exponential number of vec-

tors, say 2% with A > 0. The point being that there exists a constant b such that
the cost of computing the syndrome table is poly (n) (f:,{(b/b) = poly (n) ¢ (t:ux)
is smaller than 2*. The fact that b is constant allows on to argue that

taux
E (|Dec™ (C,y,t)|) = 2 (2(_k)> ~

With a variance argument we could show that this allows to conclude that juxta-
position can decode returning this set of admissible errors is essentially as good
as a random linear codes with a genie aided-decoder.

All in all here is our provable-double-RLPN algorithm instantiated with this
family of code and this decoder.

Definition 7.4 (Provable-DoubleRLPN with juxtaposition codes). We
define an instantiation of Algorithm [3 where we have an additionnal parameter
b € N and where:

— The family F C €[s, kaux] of auziliary codes is defined as
F=a"b, s, kyux]

— After having drawn the code Caux from F, compute and store for each i €
[1, b] an hash table T indexed by syndromes, namely T[s] = {e(aﬂx €

©)
S
S

aux

— A call to DECODE(Caux, @, taux) returns Ded™* (Cya,taux) by looking up the
previous syndrome tables.

: Haux(i)egl)x =5 } where H,uV is a parity-check matriz of clid..

Importantly, our regime of interests here will be when R,t = © (n), this corre-
sponds to regime in which the results of [CDMT24] where given. In this case,

24

the optimal parameters of double-RLPN are such that s, kaux, taux = © (s) and,
in particular, the complexity of an iteration of double-RLPN is exponential in n
and at least equal to the complexity of the FFT given by kaux 2°=vx. Basically

this means that there exists a constant b such that ¢/(,°) < 2, making the

syndrome table creation step negligible compared to the cost of the FFT.
We directly have the following complexity result.

Proposition 7.5 (Complexity of fully provable double-RLPN with jux-
taposition codes). Letn and let k,t, S, kaux, taux, Niter, b be implicit functions
of n. Suppose that b = [s/kaux| and that (ta‘ix)/2s*ka“x € O(1). Then, given an
instance of DPq (n, k,t), the expected time and memory complexity of Defini-

tion [74] is given by
Time = O(Niier (Toq +2%)), Memory = O((Moq +2"))

where Teq and Meq are respectively the expected time and memory complexity of
one call to COMPUTE-SMALL-CODEWORDS.

8 Analysis

In this section we prove the main Theorem [5.1] by analyzing our provable variant
of double-RLPN instantiated with juxtaposition code. Forgetting about the other
technical details that we will deal with later in the rigorous proof, in essence,
proving our main theorem, mainly relies on proving that, we have with proba-
bility 1 — o(1) that when x = e, the guess on e 4 is e 4. By construction of
the guess, it is sufficient to prove that with probability 1 — o(1/n) we have that

F,%ﬂyy (e,@) > F‘%,y(i) (69) if (eJy)i = 07 (8)
Fouy(er) < Fypyo (e) if (ey); =1.)

The result can then be concluded with a union bound on i € [1, n — s]. Our
proof mainly relies on the two following propositions. The first is a second-order
concentration bound on the score function.

Proposition 8.1. There exists a positive poly-bounded function fo such that for
y s
j=1 (tg{g)

2s—kaux

any t, k, s, kaux, taux, W, u, b € N implicit functions of n such that
O(1) then

P (1Fory (e2GLun) ~ E (Firy (G0 > foln)VF) = 0()

and

92) ’

b
() 3
E (Fz (e»Glyy)) = N6&=) (leyv|) [T 65, (‘e(@)
j=1

25

/237kaux c

where N is the expected number of LPN samples, namely N g (|27]) and is
given by

s b s
def aef 111 (E?BX)
N = NeqNauX, Neq :e (21:15)’ Na,ux :e ;S*ﬁ

and where the distributions considered in the probabilities are as follows

— N and & are two fixed complementary subsets of [1, n] of size s and n— s
respectively.

— C is chosen by taking its generator matrizc G € FIQCX" uniformly at random
in{ G € FE*" : rank (G %) = s} and Cauy is chosen by taking its generator
matriz G, € IF];‘““"XS uniformly at random among matrices of rank kayux.

—y=c+ewherec~U(C) and e € S is a fized vector.

— The set F7 is

def

(Mg, h) € F5xCL - by | = w, Vi € [1,b], (Maux Gy +) € S5).

— Where £ % L(H,y, G, L) is defined in Definition and where we
recall that Fisp, () is defined in Definition ,

This proposition is proved in Section [T0.1}

Remark 8.2. This proposition is only a slight variant of [CDMT24, Proposition
2].

The main part of our proof relies on the following lemma that state that the
expected value of Fy (e»G],,) and Fp o) (e»G],,) are essentially as far as

the expected value of Fyp y, (e G],,) and 0.

aux
Lemma 8.3. There exists a positive poly-bounded function fi such that for any
s,w,u € N implicit functions of n € N such that Root (K&"is)) —u€N(n—s)

we have that

1
50 (= 1) — 80 () > 8 (),
(u—1) (W) > 575987 ()
1

65 (u).

5 (u) — 60 (w4 1) >

w

fi(n)
This lemma is proved in Section [10.2}

8.1 Rest of the proof.

Recall that our algorithm is iterated a number Njte, of times. In RLPN this was
done to ensure that there existed at least one iteration such that |e_y| = u
where u is a parameter. Clearly, from Proposition [8.1] one can see that, because
we used juxtaposition codes with b block, the distribution of the score function
evaluated on the secret, Fp y (e GJ), finely depends on the weight of e on

26

aux

each subpart, namely on |e_y| and ‘eg‘ for each i € [[1, b]. We will make the

additionnal, finer bet that ‘ef;?‘ is of typical weight roughly (¢ — u)/b. More
precisely we will make the bet that

\eﬂ|—uA’

First, because b is constant, essentially this bet is verified with the same proba-
bility, up to polynomial factors, as the simpler bet that |e_y| = w. Namely, we
have that

t ('L)

Lemma 8.4. There exists a positive poly-bounded function g such that for any
t, s, b implicit functions of n we have that

o oD = (4 —)@ 1 ("))

where A and P are any fized complementary subsets of [1, n] and e is taken
uniformly at random in Si*.

The proof is straightforward using Proposition Moreover, using again the
fact b is constant one can show easily that all the quantities appearing in Propo-
sition 8.1} like N and the product of the biases, polynomially relates to the ideal
case b = 1. More precisely we have the following.

Proposition 8.5 (Relating the quantities to the case b = 1). There exists
a positive poly-bounded function fo such that for any k,t, s, u, taux, b € N implicit
functions of n € N such that

Root (Kl(l,”*s)) —u€e2(n—s) and Vie]l,bJRoot ((g)x)—(t—u) € 2 (s)

then we have that
b ((J')) i 1
[(fie =) < 2 (o =)
]:

()
oG (1 G
95— Kaux f2(nb) —Eaux

The proof is straightforward using Proposition and Proposition [3.14]

Proof (Proof of the main Theorem . In Theorem we choose the positive

poly-bounded function f appearing as f(n) = (fo(n)fl(n))2 f2(n)?® where fo, f1
and fo are defined in Proposition Lemma and Proposition respec-
tively. Let us now consider parameters k,t, s, w,u, S, kaux, taux, 0 satifying the
conditions of the theorem. Now, about the choice for Niser, by using Lemma [8-4]

27

we can show that there exists Njte, that is such that i) Niger = (5<(()'()ﬂ_)>

t—u u

and ii) there exists with probability 1 — o(1) an iteration of the algorithm that
is such that the bet on the error is valid, namely such that

b
ley|=u /\
i=1

Let us consider such a value for Nj;e; and suppose we are in one of the iteration
where the bet is valid. It is easy to convince oneself that the conditions in the
theorem are sufficient to ensure that the conditions to apply Proposition (8.1
are met with probability 1 — o(1). We recall that those conditions to apply
Proposition are that dim (Cg) = s and that J# is equal to the full set of
decoded dual vectors. We suppose that this iteration is such that those conditions
are met. Let ¢ € [1, n — s] and let us now prove that

P (G (erGlux); = (ex);) =1 —o(1/n). (11)

Note that proving it would directly prove our theorem. Indeed we then we
can easily prove that

=t-—uw®. (10)

P (G (e:@G;ux) = ez/V) =1- 0(1)

by using the union bound. In turn, we can show that .4 is an information set of
the code C with probability 1—o0(1) by using the condition that n—s—k& € w(1) in
the theorem. This means that with probability 1 —o(1) the procedure TESTING-
e_y returns the error e.

Let us now prove Eq. . Suppose, without loss of generality that (e 4), =
1, the proof in the other case is similar. Recall that by construction G (e»GJ), =
Lif and only if Flpy (e2Gl,x) < Fip yo) (€2Gl,y). Thus to prove our result
we only have to prove that

P (F%»y (eyG;ux) < ij,y(” (eQG;ux)) =1- 0(1)
We prove it using Proposition Indeed we can write that

P <|ij,y (exGl..)— E(0) > f1(nb)\/ﬁ) _ O(;) 7
P (|ij,y(i) (erGlux) — E(1)| > fl(nb)\/ﬁ) _ O(le>

where

def b %) ; def (nis) Hb‘—l (s((;’))
E(z) € N6 (u+) H 5 ((t — U)(J)>) N= -2 Qk—JI;ux =

)

Jj=1

This allows saying that we make the good guess for each coordinate with prob-
ability 1 — o(1/n) as long as

E(-1) = E(0) > fo(n")VN (12)

28

Using successively Lemma [8:3] and Proposition [8.5 we get

b

E(-1)-FE(0) > “%Néiun—s) (1) H 5t((5j<)j>) ((t B u)(j)>
7]
L st ()6 (1 —
> fi(n) fa(n) Noy (u) §taux (t —u)

Plugging this into Eq. , this means that we make the right decision with
probability 1 — o(1) if

v
fi(n®) f2(n®)

This is equivalent to asking that
2
(fo(nb)fl(nb)fz(”b))
T (sn=s) 1\ 5() 2
(60 (w62 (- w)
But, from Proposition [8.5] we have that

1 (2)

” Rl e

N6 () 6 (¢t —u) > fo(n®)VN

taux

Thus replacing N in the previous equation we get that our condition to make
the right decision with probability 1 — o(1) is

(") (o) o (o) Ai@")” fo(n)?
925 —kaux (51(”11—5) (’LL) 6)?:3)((t _ u))Q

which is exactly the condition of the theorem.

9 Conclusion

In this work we have presented a variant of the most recent code-based dual
attack, double-RLPN, but that we can fully prove without using any heuristics
up to rate R < 0.5 and that has the same performances, up to polynomial
factors, as the original algorithm. We believe that this proof strategy could also
be adapted to lattice-based dual attacks.

References
BJMM12. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. De-
coding random binary linear codes in 2"/20. How 14 1 = 0 improves in-

formation set decoding. In Advances in Cryptology - EUROCRYPT 2012,
LNCS. Springer, 2012.

29

BM18.

Car20.

CDMT22.

CDMT24.

DT17.

Dum&9.

GJL14.

Jab01.

KS21.

LF06.

MMT11.

MO15.

MT23.

Ove06.

Pra62.

Leif Both and Alexander May. Decoding linear codes with high error rate
and its impact for LPN security. In Tanja Lange and Rainer Steinwandt,
editors, Post-Quantum Cryptography 2018, volume 10786 of LNCS, pages
25-46, Fort Lauderdale, FL, USA, April 2018. Springer.

Kevin Carrier. Recherche de presque-collisions pour le décodage et la recon-
naissance de codes correcteurs. Theses, Sorbonne Université, June 2020.
Kevin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, and Jean-
Pierre Tillich. Statistical decoding 2.0: Reducing decoding to LPN. In
Advances in Cryptology - ASIACRYPT 2022, LNCS. Springer, 2022.
Kévin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, and Jean-
Pierre Tillich. Reduction from sparse LPN to LPN, dual attack 3.0. In
Marc Joye and Gregor Leander, editors, Advances in Cryptology - EU-
ROCRYPT 2024 - 43rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zurich, Switzerland, May
26-30, 2024, Proceedings, Part VI, volume 14656 of LNCS, pages 286—
315. Springer, 2024. Artifact available at https://artifacts.iacr.org/
eurocrypt/2024/a10/\

Thomas Debris-Alazard and Jean-Pierre Tillich. Statistical decoding.
preprint, January 2017. arXiv:1701.07416.

II’'yva Dumer. T'wo decoding algorithms for linear codes. Probl. Inf. Transm.,
25(1):17-23, 1989.

Qian Guo, Thomas Johansson, and Carl Léndahl. Solving LPN using cov-
ering codes. In Advances in Cryptology - ASIACRYPT 2014, volume 8873
of LNCS, pages 1-20. Springer, 2014.

Abdulrahman Al Jabri. A statistical decoding algorithm for general linear
block codes. In Bahram Honary, editor, Cryptography and coding. Proceed-
ings of the 8™ IMA International Conference, volume 2260 of LNCS, pages
1-8, Cirencester, UK, December 2001. Springer.

Naomi Kirshner and Alex Samorodnitsky. A moment ratio bound for poly-
nomials and some extremal properties of krawchouk polynomials and ham-
ming spheres. IEEE Trans. Inform. Theory, 67(6):3509-3541, 2021.

Eric Levieil and Pierre-Alain Fouque. An improved LPN algorithm. In Pro-
ceedings of the 5th international conference on Security and Cryptography
for Networks, volume 4116 of LNCS, pages 348-359. Springer, 2006.
Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random
linear codes in O(2°°**"). In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology - ASIACRYPT 2011, volume 7073 of LNCS, pages
107-124. Springer, 2011.

Alexander May and Ilya Ozerov. On computing nearest neighbors with
applications to decoding of binary linear codes. In E. Oswald and M. Fis-
chlin, editors, Advances in Cryptology - EUROCRYPT 2015, volume 9056
of LNCS, pages 203-228. Springer, 2015.

Charles Meyer-Hilfiger and Jean-Pierre Tillich. Rigorous foundations for
dual attacks in coding theory. In Theory of Cryptography Conference, TCC
2023, volume 14372 of LNCS, pages 3-32. Springer Verlag, December 2023.
Raphael Overbeck. Statistical decoding revisited. In Reihaneh Safavi-Naini
Lynn Batten, editor, Information security and privacy : 11"™ Australasian
conference, ACISP 2006, volume 4058 of LNCS, pages 283—294. Springer,
2006.

Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5-9, 1962.

30

https://artifacts.iacr.org/eurocrypt/2024/a10/
https://artifacts.iacr.org/eurocrypt/2024/a10/

Ste88. Jacques Stern. A method for finding codewords of small weight. In G. D.
Cohen and J. Wolfmann, editors, Coding Theory and Applications, volume
388 of LNC'S, pages 106—-113. Springer, 1988.

vL99. Jacobus Hendricus van Lint. Introduction to coding theory. Graduate texts
in mathematics. Springer, 3rd edition edition, 1999.

10 Appendices

10.1 Proof of the second-order concentration bound
The goal of this section is to prove Proposition that we recall here.

Proposition 8.1. There exists a positive poly-bounded function fo such that for

PERNG))
o . i=1 ()
any t, k, s, kaux, taux, W, u, b € N implicit functions of n such that %ﬁ“j‘)/?—kw* €

O(1) then
P (1Fory (0Glu) ~ B (Fry (e5GLu)| > ftn)VF) =0

and

b

) () i

E (Fz (e»Gly)) = NG ™) (ley|) H 6t((j;) (‘e(gg
e

).

where N is the expected number of LPN samples, namely N g (|7#]) and is
given by

s b s
d d H j=1 ())
N = NeqNauXa Neq :ef (2]:)75)’ Naux éfﬁ

and where the distributions considered in the probabilities are as follows

— AN and P are two fixred complementary subsets of [1, n] of size s and n — s
respectively.

— C is chosen by taking its generator matrix G € F’;X” uniformly at random
in{ G e FE*" : rank (G %) = s} and Cauy is chosen by taking its generator
matric G,y € IFS"‘“"XS uniformly at random among matrices of rank kaux.

—y=c+ewherec~U(C) and e € S is a fized vector.

— The set F7 is

def

A {(Maux, h) € FEaxCl : by | = w, Vi € [1,8], (MauxGuy + ho)? € S

— Where £ % L(H,y, Guux, P) is defined in Definition and where we
recall that Fis1, (z) is defined in Definition .

The main technical lemma that we will use here is the following giving the
first two moments of the score function.

31

t

(

(2
au

i)

).

Lemma 10.1. (Main technical lemma.) For any k,t, s, u, w, kaux, taux, 0 € N are
implicit functions of n € N we have that

)

b
s @ ;
E (Fory (eGLu) = N o= (le.v) [T 65, (|
j=1
Var (Fiy (e2Gl,,)) = O(n"™ N max (1, Naux))

Remark 10.2. We believe that the term n*! appearing in the variance is much
more reasonable and is rather some O (2%) in the constant rate regime.

Proof (Proof of Proposition . This is directly obtained by using Byenemé-
Chebyshev inequality along with the moments given in Lemma [10.1

Proving the second-order moments. Let us now prove Lemmal[I0.1] We recall for
convenience two lemmas we will be useful to prove the proposition. We recall
here the distribution appearing in the previous expression and which will

Lemma 10.3 (Distribution of some related quantities). For any k,t, s, u, w, kaux, taux, b €
N implicit functions of n € N we have that

R~ U (F;X<"‘S)) : (13)
(ch) , ~Un(n—s, n—k), (14)
R and C are independent. (15)

where R % Lift (CJ-, JV) and where the other quantities are defined in ?77.

Proof. The second property is trivial and the first and third can be shown by
observing the way R is constructed in ?? along with the fact that by assumption
in Proposition G_y is distributed uniformly at random in Fkx(" s

This allows us to get the following lemma

Lemma 10.4. We have that

b
s
E (Fory (eGLy) = N 30 (le.y) H & (e

))).

Re >)
Var (Fxy (e2Gl,)) <N |1+ Z H o ;u,;(:
ce{0,1}b : c#£0i=1

Ci

Proof. Let us first compute the expected value. Recall that we have that

ley| = u, [)| = (t—u)

, oty

e = (t—w® (16)

32

We will show that

E (Fory (e Gl)) =) (les) H%‘fff 7 (e

Rewriting the score function we have that

F (egGaux)
DD DD DRI S GV H oGtk | 1 H 1. |
- hy€(Ch) ., eli+(hyRT)Dech)
h_ye82° o) esg(l) o(® eSg(b) i=1 i=1
o taux e él:l)x
(17)
By linearity of the expected value we have that
E(Fwy(erGlu))= D, > = >
h eS8y~ *° eg,)XESS(l) e;?,)xess((:))
(e hy) b () e(®) b
(—1)teri H(S 1hw€(CL Hleéizxﬂh/vRT)(Declix
i=1 i=1
(18)

Now from the independence of the indicator variable we get that

b b
E (11”6(&)” H 1e;Qx+(hWRT)<“ec§Qx> =E (lhﬁ“”w) HE (1eéﬁx+(hwRT)<“ec;Qx)
i=1 i=1
b
=P (hy € (")) TTP (el + (RN e cll).
1=1
(19)

From Lemma(10.3{we have that (CJ-)JV ~ Un (n — s, n — k) thus using Lemma
we get
1

2k—s"

P(hy € (CL)JV> =

From Lemma|10.3|we have that for each ¢ € [1, b], eéﬁx+(hWRT)(i) ~U (§<)),

thus as CS;BX is an [s O] ké&x] linear code we get that

1

P (el + (b RNV € cl)) = PREEO

(20)

33

Plugging these last equation into Eq. yield that

b b
E(1 1 L L
nvees), [T te (hyRT)Decll | — ok—s Hl s kLD,
1=

=1

1
i = (21)

where in the last equation we used the fact that by definition of the i’th part of
a vector in Eq. (7)) we have that

b

b
Z s = s, Z kgfux = kaux-
i=1

i=1

Finally, plugging this last equality back into Eq. gives that

b
E(F(egegux)):ﬁ T Y Y (nlew i Tl
=1

h eS8y ° e&};)xESS((l) e&l’u)xe$<(<:))
a

ux taux

B n—s S()
(S TT G K (e DTT K, ([
7 ()T ()

= o Qe T3 ()

e
where in the last lines we used the definition of ¢ in Lemma .12
Let us now compute the variance of F (e»GTJ). Starting again from Equa-

tion and denoting by A € {—1,1} the value:

b
e () e(”
by el o el)) & (—pyierm) [H]

=1

1 nes s i
= %—TK&)(|e</V|)HK((z)) (‘6(9?

=1

)

we have that
b

1 b
Flestlo= X % Al o) e, e
h eS8, ° (ﬁ;)XESS(()) =1
i€[1, b]

taux

Now we use the fact that we can upper bound the variance of) . A;X; where
X; are some random variables the A; € {—1,1} are some fixed coefficient by
upper bounding the covariance as

Cov (Az Xi,Aj XJ) = AiAjOOU (X,',Xj)
< |Cov (Xi, X5)]-

34

This observation allows us to write that

Var (F(e»GJ.)) <V + C (22)

b
def
V= Z Z Var <1hw€(CLu H 1egﬂx+(hwRT)<“ec;ﬁx>

n—s i=1
h 4 €S8y (e;u)xesé(l))) v
i€[1, b]

t aux

cE X X 2 by

hy €Sy " greSy ® s (&)
» &N (&)xes (1)) (;LU)XGS:())
ie[1, b] i1, b]

taux aux

l(hmu €aux) (84 » Zaux) |IC(hy, g, €aux, ZaUX)| (24)

where

C (hJVa g4 €aux; zaux)

b b
def
cev (1}1”6(0L H Le@rtarn et levech), H 1zg2x+<hﬂRT><i>ecéﬁx> .
=1 i=1
(25)

Let us first compute the term V. As V' is the variance of a Bernoulli distribution,
we can upper bound it by the expected value of this Bernoulli:

b b
Var <1<MRT noer 11 v mwec;@x) <E <1<MRT h)ew Hleglzxﬁhwmwwecw)
=1 =1

1

=5 (Pe @)

And thus, plugging this last equation in Eq. we get

1
Z Z 2k —Fkaux

h eS8, ° (4)
N ((4) GSS()
2 ie[1, b]

s (@
(") iz ()

O —Fanx

Vv

N

N.

35

Let us now compute the covariance terms C' by first rewriting C (h_y, g4, €aux, Zaux)-
We have

b

Clhy, gr, €aux; Zaux) =E <1hwe<cL H Loty mry© e tovees), 11 1zgz,>x+<gwm><i>ecgz,>x>
=1

b b
—E <1hwew>(| | R R >ecs\,x> E (1 veen) s 10 e, e >ecs:3x>

=1 =1

Thus

C (h/Vv g4, €aux, Zaux) =

b 2

=E|1 1 1 71

- h'/VE(CJ_)‘/V gWG(CL /V H eaux+ hWRT)(i)GCa(Lu>x Zglz)x+(gJVRT)(i) €c§:l)x - 2k_kaux
=1

b 2
1
=P (hy, g € (C). 1—[IED (e+ (RN e i), 20, + (g4RT) Cegu)x) <2kkm,x>
i=1
(26)

where in the last line we used the independence of the variables.
1. Case h 4 # g 4. Suppose here that h 4 # h_y Let us first compute
C(hy, 84, €aux;, Zaux). First, as (CJ-)JV ~ U (n—s, n—k) we get from

Lemma [3.9] that)
1
P(hy, gy €(CT),)= <2k>

Moreover, regardless of the values of eale and zaux we have that eé&x—ﬁ—(g JVRT)(i)

and z&&x + (g /VRT)() are independent and uniformly distributed which yields
that

2
, : ; . 1
if hy#gy then P (egx + (RN e e, 2, + (g4RT)"Y € Céﬁ)x) = (W) :

Plugging this last equality back into C gives that

If h/V 7é g then C (h/V7 g4, €aux, zaux) =0.
Using this fact in Eq. gives that

C= Z Z Z 1eaux7ézaux |C (thv hJVa €aux; Zaux)‘

h eS8, ° () (%)
XS (eessly) (e)
taux / ie[1, b] aux/ i€[1, b]
(27)

2. Case h 4 = g 4. Let us now compute |C (h_y, h_y, €sux, Zaux)|- Recall
that from Eq. we have that

C (hJVa hJV, €aux, Zaux) =

1 2
=P (hy e (Ch), HP(JJXHMRT) ecl), 2 + @ RNV e) - <W>

=1

36

But as we have that

b
P (b e (¢h)) [TP (elih + RN e cl, 2

i=1

b 1+1
_ 1 1 ol 2l
= 9k—s H 28(7‘,)715(1')

aux
i=1

1 L 1 ERONON
T 9k—kaux H 9s(i)— O)

- aux
i=1

This yield that

(Ot (RN €

b 1
1 1 ofdx2llx
|C(hy, hy, €aux, Zaux)| = O <2k_kaux]:[23(1),,5(1') ’
i=

Finally,

c=0| > > >

_ (i) (i)
("I () S H (o)
aux (i)
okk ce{0,1}b : c£0i=1 2 —tau
(%) Ci
<;>)
SICOI N (e
9 — PRCERON

ce{0,1}b : c£0 =1

h eSSy ° s(1) s(9)
v (gu?xest()) ((0 .€S? (1) >
aux/ ie[1, b] tanx/ ic[1, b]

aux

b

1eaux7£zdux 2k: Kaux H
i=1

Ci

<28“>

Plugging this last upper bound for C' along with the expression of V' in Eq.

in Eq. allows writing

NO!
Var (Fy (e2Gl) <N |[1+0 Z H (aux)
ce{0,1}b : c£0 =1

We can now prove our main lemma.

Ci

25(1) k()

£

aux

Proof (Proof of Lemma . The expected values are already given by Lemma|10.4}

we only have to show that

Var (F (e2G]..)) = (’)(N nbtl max (1, Naux)) .

Recall that from Lemma [10.4] we have that

Var (F(e»Gl,)) <N |1+ > H
ce{0,1}b : c£0 =1

37

Ci

(G0

aux

90 — PREGERON

)

() (@)

aux 7 Zaux

The result will come from the fact that, as for any ¢, 7 we have that
s =s0) £1,
ke = kS £ 1,
thle = thh £ 1,

we can write that

(i) i @)
9s(—k{)) 41 90—kl
&)
— O (ti(i{l)x) 30
= Ofn) (30)

The previous equation yields that, regardless of ¢ € {0,1}® in Eq. we have
that

Ci

(i)
b s

(t(;i,)x) b
|| e =0|n’” max | 1, 2
| 9s() —{0, 95— Kaux
i=1

I ()

= O(nb max (1, Naux)) .

Plugging this last equation in Eq. we get:

Var (F(e»GI,)) <N [1+ Y O(n® max (1, Naw))
ce{0,1}b : c£0

< N [1 =+ O(?’Lb+1 max (17 Naux))]
= (’)(N n®T! max (1, Naux))'

‘Which is our desired result.

10.2 Proof of the lemma comparing the biases
In this section we prove Lemma [8:3] and which we recall here.

Lemma 8.3. There exists a positive poly-bounded function fi such that for any
s,w,u € N implicit functions of n € N such that Root (KQ(U"_S)) —u € 2(n—s)
we have that

509 (u— 1) — 50 (u) > 59 (),

B (1) = 60 (w4 1) >) (),

To prove it we use the following recurrence relations.

38

Lemma 10.5 (Difference of bias). Let n,w,t € N, we have that

o (k= 1) — ol (1) = 2=y P (1 —1).

w
n

Proof. Recall that by definition in Lemma [3.12]

_ K (1)
()

First let us show the following recurrence relations

a5 (1)

EMt-1)=Kr"Y ¢ -1)+ KD -1), (31)
E® =K Ye-1)-K! D @-1). (32)

By Lemma [3.17] for any x € S we have
K (v) = KV (%)

= > (p®,

hes?

By taking any x’ € S"}' and constructing x = (0| x') € S, we get, by
decomposing the previous sum on the values of h on the first position, that

KMit—1)=KrDt-1)+K"PE-1).

w—
Thus, Eq. is showed. In the same manner, taking this time x = (1||x’) € Sf*

we get

KM@ =KrDE-—1)-Kk"PE-—1).

w—1

Thus, Eq. is showed. Now, using the fact that

n\ n(n-1
w) w\w-—1
and these recurrence relations we get

2Ky (- 1)
w K5 (8- 1)

=2 — —
Oty

The proof of Lemma [8:3] is now straightforward.

6 (t—1) =6 (1 —1) =

Proof (Proof of Lemma . Using the previous recurrence relations we have
that

50 (= 1) — 60 (u) = 607V (w—1) .

w

39

Now, using Proposition [3.14] there exists a bivariate function s such that

51(::15—1) (u—1) = o (2m((w—1)/(n—s—1),(u—1)/(n—s—1))n) .
By assumption in the lemma, we have that u < Root (Kfﬂn_s)>, this allows

to show that the couple ((w — 1)/(n — s —1),(u — 1)/(n — s — 1)) belongs
def

to A= {(w,7) €10,1? : 7 < 1/2 - /w(l —w) }. Using the fact, from
Proposition that « is differentiable on A along with Taylor’s theorem allows

to conclude that 51(;:571) (u—1)=0 ((51(1,“75) (u))

40

	Proving modern code-based dual attacks

