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surtout, j’ai vraiment beaucoup aimé travailler avec toi, tu te mets au niveau des gens comme
personne d’autre. Tu m’as fait aimer ma première comédie musicale, je dois te dire bravo,
c’était pas gagné.
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Enfin, merci à Samo pour sa bonne humeur contagieuse, juste respecte-moi, mets ma tasse
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Charles, dans la cage d’escalier

”Tu n’aurais pas vu un Bulbizarre dans le couloir ?”
Bastien, sur un de ses jeux électroniques
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Abstract

English

In this thesis, we design and analyze dual attacks for solving the decoding problem. In code-
based cryptography dual attacks, a.k.a statistical decoding, were introduced by Al-Jabri in
2001. However, it turned out that his algorithm was not competitive against Information
Set Decoders (ISD). Starting with the Prange algorithm in 1962, the ISD’s have been the
dominant family of decoders for the last 60 years and are used to parameterize code-based
schemes.

Our main contribution is to dramatically improve dual attacks and show that they can
beat the best ISD’s for some parameter regimes. In particular, our best attack asymptotically
significantly beats all previously known decoders for codes of constant rates smaller than
0.42 at the Gilbert-Varshamov distance. This result was obtained by revisiting Al-Jabri’s
statistical decoding algorithm and generalizing it using a splitting strategy to reduce decoding
to a problem that is essentially the Learning Parity with Noise (LPN) problem. We then
solve it using standard solvers. Part of our work also lies in the development of tools to
analyze these attacks: we do not use the traditional independence assumptions that were
used to analyze statistical decoding and which must be used with great care. Our tools
are based on the Poisson summation formula and a model for the distribution of the weight
enumerator of random linear codes. We base the analysis of our attacks on this model and
verify it experimentally. We also devise a variant of our most advanced attack that has, up
to polynomial factors, the same performance but which we can fully prove without using this
model.

The second part of this work is dedicated to devising and analyzing dual attacks in lattice-
based cryptography. Here, the problem that we target is the Learning With Errors (LWE)
problem. In this case, dual attacks have been recently vastly improved, partly using a similar
splitting strategy. In particular, two recent attacks, first by Guo & Johansson in 2021 and
then by Matzov in 2022 claimed to reduce the security of the NIST standard Kyber (ML-
KEM). However, Ducas & Pulles showed in 2023 that the key independence assumptions used
in the analysis of those recent lattice-based attacks were flawed. This left open the question
of how to analyze these attacks and whether they could really work as expected. We devise a
slight variant of these recent dual attacks and provide new tools for analyzing them without
these assumptions. In particular, we show that our attack comes dangerously close to Kyber’s
security claims and that we slightly beat those recent attacks. This settles the controversy
over whether a dual-sieve attack can really work as expected.



Français

Dans cette thèse, nous concevons et analysons des attaques duales pour résoudre le problème
du décodage.

En cryptographie basée sur les codes, les attaques duales ont été introduites par Al-
Jabri en 2001 avec l’algorithme de décodage statistique. Cependant, il s’est avéré que son
algorithme n’était pas compétitif face aux décodeurs par ensembles d’informations (ISD). En
commençant par l’algorithme de Prange en 1962, les ISDs ont été la famille dominante de
décodeurs ces 60 dernières années et sont utilisés pour paramétrer les schémas basés sur les
codes. Notre contribution principale est d’améliorer drastiquement les attaques duales et de
montrer qu’elles peuvent battre les meilleurs ISDs pour certains régimes de paramètres. En
particulier, notre meilleure attaque bat asymptotiquement de manière significative tous les
décodeurs connus auparavant pour des codes de taux constant inférieur à 0,42 à la distance de
Gilbert-Varshamov. Ce résultat a été obtenu en revisitant l’algorithme de décodage statistique
d’Al-Jabri et en le généralisant à l’aide d’une stratégie de découpage pour réduire le problème
du décodage à un problème qui est essentiellement un problème d’apprentissage de parité avec
du bruit (LPN). Nous le résolvons ensuite en utilisant des solveurs standards. Une partie de
notre travail réside aussi dans le développement d’outils pour analyser ces attaques: nous
n’utilisons pas les hypothèses d’indépendance qui étaient traditionnellement utilisées pour
analyser le décodage statistique et qui doivent être utilisées avec beaucoup de précautions.
Nos outils sont basés sur la formule de sommation de Poisson et un modèle pour la distribution
de l’énumérateur de poids des codes linéaires aléatoires. Nous basons l’analyse de nos attaques
sur ce modèle et le vérifions expérimentalement. Nous concevons aussi une variante de notre
attaque la plus avancée qui a, à des facteurs polynomiaux près, la même performance que
celle-ci mais que nous pouvons prouver entièrement sans utiliser ce modèle.

La deuxième partie de ce travail est dédiée à la conception et à l’analyse d’attaques duales
en cryptographie basée sur les réseaux. Ici, le problème que nous ciblons est le problème
d’apprentissage avec du bruit (LWE). Dans ce contexte, les attaques duales ont été récemment
grandement améliorées, en partie en utilisant une stratégie de découpage similaire. En par-
ticulier, deux attaques récentes, d’abord par Guo & Johansson en 2021 puis par Matzov en
2022, ont affirmé réduire la sécurité du standard NIST Kyber (ML-KEM). Cependant, Ducas
& Pulles ont montré en 2023 que les hypothèses d’indépendance clés utilisées dans l’analyse
de ces récentes attaques à base de réseaux étaient erronées. Cela a laissé ouverte la question
de savoir comment les analyser et si elles pouvaient réellement fonctionner comme prévu.
Nous concevons une légère variante de ces attaques et fournissons de nouveaux outils pour
les analyser sans ces hypothèses. En particulier, nous montrons que notre attaque s’approche
dangereusement des revendications de sécurité de Kyber et que nous surpassons légèrement
ces récentes attaques. Cela règle la controverse sur la question de savoir si une attaque duale
(par crible) pouvait réellement fonctionner comme prévu.
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Introduction

Post-Quantum Cryptography

The goal of public key cryptography is to enable confidential and authenticated communi-
cation over insecure channels without requiring a pre-shared secret. For this purpose, the
security of almost every public-key scheme relies on the difficulty of solving some well-defined
computational problems. For example the security of the first key-exchange scheme [DH76]
relies on the difficulty of solving the discrete log problem and that of RSA [RSA78], the first
ever public key encryption scheme relies partly on factoring large composite numbers. Both
are at the moment widely used over the internet. Shortly after, McEliece [McE78] proposed
an encryption scheme whose security relied partly on the hardness of generically decoding
linear codes, however this scheme was not considered practical at that time.

Importantly, those underlying problems are conjectured to be hard. More precisely it is
often conjectured that there exists a polynomial f in a security parameter λ ∈ N, such that
the complexity of the best algorithm solving this problem for an instance of size f(λ) is 2λ.
This makes the schemes practical and scalable as it ensures that the communicating parties
have an exponential advantage over an adversary. For the most widely used schemes those
conjectures are put to the test by sometimes decades of active research and the complexity
of the best algorithms are used to parametrize the scheme.

In a breakthrough paper, [Sho94] exhibited a quantum polynomial algorithm which al-
lowed solving the problem underlying the security of [DH76] and [RSA78], making them
insecure if a sufficiently powerful quantum computer came to exist. This is a major threat
to the security of the world communication as both schemes are still overwhelmingly used
over the internet. Together with the recent advances in quantum computing this triggered
an international research effort to find schemes that are assumed to be quantum resistant,
a.k.a Post-Quantum schemes. Quite amazingly the McEliece scheme, which is code-based
and was one of the earliest ever PKE proposal belongs to this category. Since then there have
been many new scheme proposals based on many different computational problems, some
lattice-based, code-based, multivariate, isogney and hash-based schemes.

In 2017 the National Institute of Standards and Technology (NIST) launched a competi-
tion to standardize post-quantum schemes which partially ended in 2022 with the choice of 4
schemes, that are now standardized, an encryption scheme, Kyber (ML-KEM) and 3 signa-
tures schemes Dilithium (ML-DSA), Falcon (FN-DSA) and Sphincs+ (SLH-DSA). Except for
SPHINCS+, all of these schemes are based on the computational hardness of problems that
involve structured lattices. To find alternatives which did not rely on these problems NIST
continued the competition up until a few months ago when the only contender left where
only code-based: the encryption schemes HQC [AAB+22b], BIKE [AAB+22a] and Classic
McEliece [ABC+22] which was a proposal based on the original scheme of McEliece. Finally,
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very recently, HQC was selected as a winner to back up Kyber and will soon be standardized.
Last, in 2022 the NIST launched another competition to standardize additional alternative
signature schemes to those already standardized. To this day this competition is still ongoing
and includes both lattices based and code-based schemes.

The decoding problem and code-based cryptography

At its core the problem is simply to solve an under-determined linear system but with an
additional non-linear constraint that makes the problem hard. In its most simple form you

are given say a binary matrix H ∈ F(n−k)×n
2 , a parity-check matrix, and a column vector

s ∈ F(n−k)×1
2 , a syndrome, and the goal is to return if it exists, a row vector e ∈ Fn

2 of
prescribed small Hamming weight |e| = t and such that He⊺ = s. Without this constraint on
the weight, the problem could easily be solved with linear algebra, but this weight constraint
makes it strikingly harder. In fact, the associated decision problem is NP-complete and some
natural average variant of this problem is conjectured to be hard as even after 60 years of
active research and a very long line of work, for an appropriate choice of n, k, t, the average
complexity of all known decoders is exponential in the error weight t.

An historic problem

In fact this decoding problem takes its root from coding theory, well before code-based cryp-
tography. Coding theory was introduced 70 years ago by [Sha48] to transmit reliably informa-
tion through noisy channels by adding redundancy. Say for example that the channel takes
binary symbols and that each transmitted bit has a small probability of being flipped. One
efficient way to add this redudancy is by encoding a message m ∈ Fk

2 into a longer binary
word of length n. This is typically done using a binary linear code of length n and dimension
k, namely a linear subspace of dimension k of the vector space Fn

2 , which is typically given
under the form of a generator matrix G ∈ Fk×n

2 (i.e. a basis) of the code C that is such
that C = {mG : m ∈ Fk

2} and transmitting the codeword c = mG. After going through
the channel, the receiver gets the noisy codeword y = c + e where c is the transmitted
codeword and e is an error vector coming from the noisy channel and which has presumably
a small Hamming weight. The receiver’s goal is then to recover c and hence m from this
noisy codeword y. This is basically the telecomunication variant of the decoding problem.
One can readily see that this problem is in fact almost equivalent to the decoding problem
defined above. Indeed, the receiver can compute with linear algebra a parity-check matrix

H ∈ F(n−k)×n
2 of C, that is a matrix such that C = {Hc⊺ = 0 : c ∈ C} and compute the

syndrome Hy⊺ = H (c+ e)⊺ = He⊺. And conversly, given a syndrome He⊺ and a matrix H
one can compute easily with linear algebra a noisy codeword y which is such that y = c+ e.
As such finding the closest codeword is really just finding the error e of smallest Hamming
weight which has this specific syndrome. This left open for decades two major open questions:
(1) what specific codes to choose to ensure that with good probability the closest codeword
is actually the sent codeword c, and (2) what procedure can we devise to actually find this
closest codeword? Concerning the first point, there exist theoretical bounds that give the

minimum amount of reduncancy one needs which is given in terms of the code rate R
def
= k/n

in order to transmit reliably over a channel with a certain noise amount. Namely, Shannon’s
theorem states that if the coordinates of the error are chosen i.i.d according to a Bernoulli
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distribution of parameter p, then essentially the rate of the code needs to be smaller than
the channel capacity R < 1 − h (p) where h (x) = −x log2(x) − (1 − x) log2(1 − x) is the
binary entropy function. Conversely, it was shown that an overwhelming majority of linear
codes achieve this bound, namely picking a linear code at random ensures with overwhelming
probability that the picked code is optimal in that sense but as mentionned earlier but it
was soon noticed that the decoding step was hard in general. This prompted a huge research
effort to find specific families of linear codes which where good and for which we could find
an efficient decoder, understand a decoder that could decode up to these optimal bounds and
which runs in polynomial time in the length of the code. An early code proposal relevant in
our context was made by Gallager [Gal63]. It relied on the creation of codes with extremely
low weight (constant) dual codewords, namely LDPC. The dual C⊥ of a code linear code C is
defined as

C⊥ def
= {h ∈ Fn

2 : ⟨c,h⟩ = 0, ∀c ∈ C}
and is itself a linear code whose codewords h ∈ C⊥ are called dual codewords, or parity-checks
of C. Gallager key observation is that when h is a dual codeword of C, namely h ∈ C⊥, we
have that

⟨y,h⟩ = ⟨c+ e,h⟩ = ⟨e,h⟩ =
n∑

i=1

eihi =
∑

i∈J1, nK : hi=1

ei

is essentially and crucially more biased toward 0 as the Hamming weight of e and h get
smaller. This can be leveraged to decode, and, essentially regardless the technique used,
the rational is that the amount of information learned, per dual vector h, about the error e
gets bigger as the weight of h decreases. One simple way of decoding could be for example,
to recover the first coordinate e1 of the error e one could consider a certain number of low
weight dual vector involving this coordinate and decide that e1 is 0 or 1 based on whether
⟨y,h⟩ = e1 +

〈
eJ2, nK,hJ2, nK

〉
is more tilted toward 0 or 1. Gallager’s LDPC construction

essentially consists in building a sparse dual basis: this is done by choosing some linearly
independent vectors of very small, constant, Hamming weight. Concretely his decoder is
more involved than the one presented above.

For code-based cryptograhy

Starting with McEliece a vast number of encryption schemes used codes that could be decoded
to create trapdoor one-way functions allowing the design of Public-Key Encryption (PKE).
The idea is basically to choose at random a code in a family of codes with an efficient t-error
correcting procedure and publish an arbitrary basis of that linear code. Encryption can then
be done by sending a noisy codeword (the secret is the error or the codeword) and decryption
is done using the trapdoor decoder. Essentially the security of these schemes rely on the
incapacity of the adversary to recover the efficient decoder from an arbitrary basis and on
the difficulty of the decoding problem. The first instantiation of this was done by McEliece
with Goppa codes, which is still unbroken. Since then proposals around Gallager’s idea of
using code with low weight vectors in the dual have emerged, the difficulty being that his
codes cannot be used as is as the constant weight dual basis can be recovered in polynomial
time from any basis of the code. Some proposal [BC07] was made using disguised QC-LDPC
codes but was broken in [OTD10]. Then, there is the BIKE approach that increases the
weight of the secret dual basis from constant to weight Θ (

√
n). This basically allows to

make it hard enough to recover the secret basis but at the cost of a smaller decoding distance
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(which decreases the performance of the scheme) as, for each vector h ∈ C⊥ of the secret
dual basis ⟨y,h⟩ now contains way less information about the error compared to the LDPC
context. Another approach was proposed by Alekchnovich [Ale03], his idea was to really take
a random code but to plant in it a single secret moderate weight Θ (

√
n) dual vector h. The

encryption of 0 is made by sending several y which are chosen uniformly at random in Fn
2 and

the encryption of 1 is made by sending noisy codewords, say y = c+ e, where |e| = Θ(
√
n).

The receiver would then learn if 1 or 0 was sent by observing if ⟨y,h⟩ is tilted toward 0 or
not. The advantage of this scheme is that it can be shown that its security solely relies on the
decoding problem. Eventually this lead, with various improvement, to the HQC cryposystem
which is now a NIST standard. Note that both HQC and BIKE add a quasi-cyclic structure
to the underlying code for efficiency. Even if there are no known polynomial reduction from
the average decoding to the average decoding of quasi-cyclic codes, the quasi-cyclic structure
is not believed to weaken much the scheme as the existing techniques [Sen11] that leverage
this quasi-cyclic structure to decode only gain a polynomial factor. This explains why it
is highly relevant, even in this quasi cyclic context to study the difficulty of the standard
average decoding problem. The security of both these scheme rely on the average (quasi-
cyclic) decoding problem with a distance that is sublinear in the code length, essentially
Θ (
√
n) and with a code rate R = k/n which is equal to 1/2 for BIKE and around 1/3 for

HQC.

On the other spectrum of asymmetric cryptography, the difficulty of the decoding problem
is also used to build code-based signature scheme. Many are constructed from building
Zero-knowledge proof, starting with [Ste93], and applying the generic Fiat-Shamir transform
[FS87]. Those schemes do not require a trapdoor decoder and thus the best performance
is obtained with random codes and an error weight close the so called Gilbert-Varshamov
bound, which is the weight for which the decoding problem is the hardest.

Generic decoders and hardness in the constant rate regime

The main average problem that we will target in this thesis is the following standard
variant of the average decoding problem given as follows and that we state for convenience
in its generator matrix form.

Definition 1 (The average decoding problem, generator matrix variant). Let k, n, t ∈ N be
such that k ⩽ n and t ⩽ n. Given (G, y) and n, k, t where

• G is taken uniformly at random in Fk×n
2 ,

• y is taken as y = sG + e where the secret s is distributed uniformly at random in Fk
2

and e is distributed uniformly at random among vectors of Fn
2 of Hamming weight t,

the goal is to find a vector s ∈ Fk
2 such that |y − sG| = t.

Crucially, the complexity of the best generic decoders, i.e. algorithms to solve this prob-
lem, are used to choose the parameters of the aforementioned code-based schemes. We will
mostly study its hardness asymptotically in the traditional constant rate R = k/n regime: the
security of the aforementioned schemes rely on the difficulty of this problem in this constant
rate regime.
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Information set decoders The first non-trivial decoder (other than naively enumerating
the secret or the error) was introduced by Prange [Pra62] in 1962. Basically he noticed that
it was sufficient to know the value of the error e on k positions to recover the secret s with
basic linear algebra. His idea was to select k positions at random and make the bet that they
contain no error. This bet makes sense because the error is of low Hamming weight. Prange
iterates with k fresh positions each time until eventually this bet is valid and the solution can
be recovered. The complexity of this algorithm is essentially the cost of the linear algebra to
solve the system, this is a polynomial in n, times the number of iterations, this is exponential
in t and n for the right choices of parameters. In particular the problem is the hardest when t
is the equal to the so called Gilbert-Varshamov distance, from this point the problem becomes
easier because the number of solutions increases.
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(a) Plot of α, the asymptotic time complexity
exponent of Prange as a function of the relative
weight τ at rate R = 0.5: the decoder solves
the decoding problem given in Definition 1 with
probability 1 − o(1) and in time, up to polyno-
mial factors, 2αn when t/n→ τ and k/n→ 0.5.
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tance τGV (R)
def
= h−1 (1−R) where

h−1 () is the inverse on [0, 1/2] of
the binary entropy function defined as

h (x)
def
= −x log2 (x)− (1− x) log2 (1− x).

Since Prange there has been many improvements to ISD’s, to name a few, [LB88, Ste88,
Dum89, MMT11, BJMM12, MO15, BM17, BM18, Ess23, GJN24, DEEK24], the state of the
art is given by [BM18]. For 60 years the ISD’s have been the dominant family of generic
decoders and are essentially the best decoders when decoding codes of constant rates. All
those improved algorithm share with Prange the fact that they make a certain bet on k (or
more) positions of the error, but the improvement comes by relaxing the bet and allowing a few
number of positions of the error to be 1’s. The goal now shifts to recovering which are those
erroneous positions. In some cases finding those really is solving a smaller decoding problem
in a related code of higher rate but at a smaller distance. Those ISD benefits massively from
the fact that in those regimes there exist relatively efficient combinatorial decoders that can
be used to decode. The first of which can be traced back to [Dum86]: it is a collision based
approach gaining essentially a square root factor over the naive enumeration of the errors.

Very notably it turns out that when the decoding distance t is so below the Gilbert-
Varshamov distance that it is sublinear in the codelength, that is t = o(n), then the complexity
of Prange and all subsequent ISD’s improvements is some 2−t log2(1−R)(1+o(1)) [CS16] where
the difference is only quantifiable in the second order term hidden in o(1) and it remains
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a major open question to find better decoder in this regime. This is the main reason why
the security of the aforementioned encryption schemes (HQC, BIKE, Classic McEliece) is so
stable.

Statistical decoding a.k.a the first dual attack In 2001, Al-Jabri’s introduced statis-
tical decoding [Jab01], a decoder not belonging to the ISD family. It can be considered as the
first dual attack. His idea is to reuse Gallager’s idea: concretely Al-Jabri, to recover the first
coordinate of the error, computes many dual vectors h of low weight that involves this first
coordinate (i.e. h1 = 1) and decide that e1 = 0 if

⟨y,h⟩ = e1 +
〈
eJ2, nK,hJ2, nK

〉

is more tilted toward 0 than 1. The main difference is that because the code is random, for
constant rates, we expect that even the smallest dual vector is of weight Ω (n) contrary to the
weight in O(1) in the LDPC context, so each dual vector yield much less information about
the error. Second, there is also the difficulty of computing those low weight dual vectors which
is also a hard problem and is closely related to the decoding problem as most of the existing
decoders can be used to solve the average decoding problem can be used to find low weight
codewords in a random code. In this case one can show that the number of dual vectors to
make a meaningful decision needs to be exponential in the error weight t and [DT17a] showed
that statistical decoding did not compete with ISD.
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Figure 2: Asymptotic complexity exponent of some generic decoders when decoding random
codes of rate R = k/n at the Gilbert-Varshamov distance. The plain black statistical de-
coding curve is the asymptotic complexity of [Jab01] devised in [DT17a, Figure 7, Statistical
Decoding]. The dashed black statistical decoding (lower bound) curve is the asymptotic com-
plexity of Statistical decoding when the cost of computing the dual vectors is overlooked, this
was given by [DT17a, Figure 7, Optimal Statistical Decoding].

Decoders for the very low rate regime, the LPN setting

Alternatively, there exist many code-based cryptographic constructions whose security rely
on a slight variant of the aforementioned decoding problem called the Learning Parity with
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Noise (LPN). In this variant one is given access to an oracle that when called outputs a noisy
linear combination of a secret (g, ⟨s,g⟩+ e) ∈ Fk

2 × F2 where s ∈ Fk
2 is some fixed unknown

secret, g is uniformly random in Fk
2 and e is a noise following a Bernoulli distribution of fixed

known parameter. The goal is to recover the secret s with as many calls to the oracle as
wanted. Putting the g⊺ inside the columns of a generator matrix G, this really is a decoding
problem y = sG+e but now the length n can get arbitrarily large (and the error distribution
is different from the average problem presented above). The fact that we have access to
much more (i.e. we decode well below the Gilbert-Varshamov distance) samples than what is
information-theoritically required to recover the secret makes the problem much easier. But,
it is still conjectured to be hard and the first solver/decoder BKW [BKW03] showed that it
could be solved in time and number of samples in 2Θ(k/ log k) for any Bernoulli with constant
noise. Basically the idea of BKW and all subsequent solvers is to somehow reduce solving
this LPN problem to another related LPN problem of smaller dimension, but with increased
noise. This dimension reduction is done by finding some gi’s whose sum is zero on some fixed
coordinates. Summing the associated samples yi = ⟨s,gi⟩+ ei yields a new sample involving
less coordinates of the secret but with a bigger noise. Finding such sum is done with a collision
technique that successively cancels the vectors block by block. As an example BKW computes
many such reduced samples by reducing to a dimension one problem and solve the resulting
problem by majority voting. In fact one can see that this technique really is a kind of dual
attack where one computes low-weight dual vectors h of the code generated by G where we
deleted the first row, this yield the sample

⟨y,h⟩ = ⟨sG+ e,h⟩ = ⟨s,hG⊺⟩+ ⟨e,h⟩ = ⟨s1, (hG⊺)1⟩+
∑

i∈Supp(h)

ei.

The main difference with statistical decoding is that in this regime there exists dual vectors
of extremely low weight (

√
k essentially) which we can compute efficiently with the collision

technique introduced in BKW. This is what makes this attack competitive here. BKW was
later improved by [LF06] which relaxed the dimension loss by reducting to some higher (than
one) dimensional problem and solving it efficiently using a Fast Fourier Transform (FFT)
decoder whose use can be traced back to decoding Reed-Muller codes [Gre66]. This was
improved by [GJL14] who introduced a novel secret compression technique to further reduce
the dimension of the problem.

The LWE problem and lattice-based cryptography

In his seminal work, [Reg05] introduced a generalization of the decoding problem which is
called Learning With Error (LWE). The difference being that the considered linear system
lies in a much larger ring Zq with say q > 2 instead of the binary field F2 and the metric
changes from the Hamming weight to a much finer one: the coordinates of the error e ∈ Zn

q

are chosen to be small compared to q. Here we qualify ”small” by identifying Zq with the set
of integers (say q is odd) { −(q − 1)/2, · · · 0, · · · , (q − 1)/2}.

Definition 2 (The LWE problem). Let n, k, q ∈ N with k ⩽ n and let χ be a distribution
with support in Zq. Given n, k, q, χ and (G, y) where

• G is taken uniformly at random in (Zq)
k×n,
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• y is taken as y = sG + e where the secret s is taken uniformly at random in Zk
q and

where the coordinates of the error e are taken identically and independently at random
according to χ,

the goal is to recover s.

In fact Regev introduced an encryption scheme whose security is based on the hardness
of this problem and which can very essentially be seen as the analog of Alekhnovich scheme
to this generalized setting. With various improvements this scheme eventually yielded Kyber
which is now a NIST standard. One of which came from the introduction, for efficiency
purposes, of an underlying polynomial ring structure, but it is not believed to degrade the
hardness of the problem by more than polynomial factors in practice. This will be the reason
why we stick, as it is traditionally done for generic attacks, to the study of the hardness of the
problem defined over Zq. More generally, the hardness of LWE is now also at the center of a
wide variety of cryptographic constructions, ranging from signatures schemes with the NIST
standard Dilithium to Homomorphic Encryption schemes [BV11]. As such, finely studying
the difficulty of this LWE problem is crucial as the complexity of the best solvers is used to
select the parameters of those schemes.

In practice χ is often symmetric and concentrated around 0, and is a discrete Gaussian
distribution in Regev’s original work, or a closely related centered binomial distribution in
Kyber. This naturally involves the Euclidean metric as in that case one can argue that the
error e is roughly uniformly distributed in some Euclidean ball of small known radius and the
problem really becomes to find the s such that the y− sG is in that Euclidean ball. The two
aforementioned schemes are deep down the injective regime where s is the unique solution
with overwhelming probability. Contrary to the standard decoding problem we presented
earlier, taking a higher modulus and using a finer norm (than the Hamming weight) at the
same time somewhat changes the source of hardness of this problem in terms of both the
underlying security reduction and the techniques used to solve it. Let us explain both these
points.

Lattices

Regev [Reg05] gave arguments for the security of his scheme by showing that the average LWE
problem was quantumly harder than some worst-case lattice problems that where difficult in
practice. This is one of the reason why the schemes whose security are based on the hardness
of the LWE problem are called lattice-based schemes. More precisely, a lattice Λ is a discrete
subgroup of Rn, that is it can be written as Λ = BZn for some basis B ∈ Rn×n. Regev
showed that there was a polynomial quantum reduction from the problem of approximating
(up to a polynomial factor

√
n) the length of the shortest non-zero vector in any given lattice

to the LWE problem. And, while [AR05] showed that this last approximation problem was
in NP∩CoNP it is also believed to be hard in practice as the best known algorithms solving
this problem are sieving style algorithms [AKS01] that runs in exponential time 2O(n).

Solving LWE

Solving LWE in our case of interest is finding the closest (in terms of Euclidean norm) noisy
codeword y in the code C generated by the given matrix G ∈ Fk×n

q . One standard way to
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solve this problem is by periodizing the associated code C generated by G to make it a lattice
by constructing:

Λ = C + qZn.

In that case solving LWE is finding the closest vector of the lattice Λ ∈ Rn to y, seen as a
vector in Rn. This can then be turned into the problem of finding the shortest vector in a
related lattice, which can be solved in time 2O(n) with sieving-style algorithm [AKS01], the
best in terms of asymptotic time complexity is given by [BDGL16], whose technique allows
one to heuristically find the shortest vector in time 20.292n(1+o(1)). These are called primal
attacks because they manipulate primal vectors, i.e. vectors in Λ, and were until recently
the dominant family of solvers. One can note that this reduction does not work to decode
a q-ary linear code with an error of low Hamming weight. In that case the best algorithm
is essentially a generalization of the aforementioned Prange decoder, which becomes less and
less interesting as the associated metric gets finer and is hence slightly less interesting for
solving LWE.

Similar to coding theory and starting from [AR05], there exist dual attacks to solve LWE
and were at first did not compete against primal attacks. The base idea is the same: by
computing small dual vectors h ∈ C⊥ we can leverage the fact that

⟨y,h⟩ = ⟨c+ e,h⟩ = ⟨e,h⟩

is more biased toward the small values of Zq as e and h gets smaller. This becomes lattice-
related as, again, computing those small dual vectors can be done by periodizing C⊥ and using
sieving algorithms as noted by [ADPS16b] for example. Those dual attacks were successively
improved [Alb17, EJK20, GJ21, MAT22] up until those last two work that claimed to re-
duce the security of Kyber in particular. Recently [DP23b] showed that some independence
assumptions that are at the center of the analysis of those recent attacks are flawed, and it
is left as an open question how to actually analyze those attacks without these assumptions
and if they really work as expected.

Contributions

Publications and preprints

Our main contributions lie in the design and analysis of new dual attacks in code-based and
lattice based cryptography. This thesis main results are based on the following publications
and preprints, we however rewrote them in a slightly different way, sometime including addi-
tional results.

• [CDMT22] Kévin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, Jean-Pierre
Tillich. ”Statistical Decoding 2.0: Reducing Decoding to LPN”. In : Advances in
Cryptology – ASIACRYPT 2022: 28th International Conference on the Theory and
Application of Cryptology and Information Security, Taipei, Taiwan, December 5–9,
2022, Proceedings, Part IV

• [MT23] Charles Meyer-Hilfiger, Jean-Pierre Tillich. ”Rigorous Foundations for Dual
attacks in coding theory”. In : Theory of Cryptography - 21st International Conference,
TCC 2023, Taipei, Taiwan, November 29 - December 2, 2023, Proceedings, Part IV.
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• [CDMT24] Kévin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, Jean-Pierre
Tillich. ”Reduction from Sparse LPN to LPN, Dual Attack 3.0”. In : Advances in
Cryptology – EUROCRYPT 2024: 43rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zurich, Switzerland, May 26–30, 2024,
Proceedings, Part VII

– A software and its documentation published at Eurocrypt 2024 Artifact to jus-
tify the claims made in the article. Available at https://artifacts.iacr.org/
eurocrypt/2024/a10/

• [CMST25] Kévin Carrier, Charles Meyer-Hilfiger, Yixin Shen, Jean-Pierre Tillich. ”As-
sessing the Impact of a Variant of MATZOV’s Dual Attack on Kyber”. To appear in
Advances in Cryptology – CRYPTO 2025. ePrint available at https://eprint.iacr.
org/2022/1750.

• Charles Meyer-Hilfiger. ”Proving modern code-based dual attacks”. To appear soon on
ePrint.

Note that one of my contributing article [CMST25] is in fact an updated version of [CST22],
a late 2022 preprint with the same authors except me. The main addition of this update
is a new corrected analysis of the dual attack removing some commonly used independence
assumptions that were shown to be flawed in [DP23b].

Summary of contributions

Code-based

The main contribution of this thesis is to significantly develop and improve dual attacks in
code-based cryptography and to gain a fine understanding of their behavior.

In particular, our best attack asymptotically significantly beats all previously known de-
coders for codes of constant rates smaller than 0.42 at the Gilbert-Varshamov distance. It
gives for the first time after 60 years, a decoding algorithm that asymptotically beats ISD’s
for a significant range and that makes a significant change in this lower rate regime. Our
complexity results are given in Fig. 3. These results were obtained by revisiting Al-Jabri’s
statistical decoding algorithm and generalizing it using a splitting strategy to reduce decoding
to a problem that is essentially the Learning Parity with Noise (LPN) problem. We then solve
it using standard solvers.

As a side note, we found an error in the original analysis of the state of the art [BM18] that
we show lead to a very significant underestimation of the asymptotic complexity of this ISD.
We corrected its analysis and thus established a corrected reference for the state-of-the-art.
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Figure 3: Asymptotic complexity exponent of some generic decoders when decoding random
codes of rate R = k/n at the Gilbert-Varshamov distance. The state of the art curve is given
by the ISD given in [BM18] but with our corrected analysis.

The second main code-based contribution of this thesis lies in developing new tools to
analyze dual attacks and giving algorithmic tweaks to make their analysis tractable without
assumptions. In particular, we show experimentally that the standard independence assump-
tions used to analyze statistical decoding cannot be used to analyze our attacks in general.
We develop an alternative path for analyzing our attacks without these independence assump-
tions. Our tools are based on the Poisson summation formula and a model for the distribution
of the weight enumerator of random linear codes. We base the analysis of our attacks on this
model and verify it experimentally. Finally, at the end of this thesis, we devise a variant of
our most advanced attack that has the same performance up to polynomial factors but which
we can fully prove without using any model.

Lattice-based

Our main lattice-based contribution lies in the design of a new lattice-based dual attack
against LWE. Our attack is a variant of the recent lattice-based dual attack by [GJ21, MAT22]
that claimed to diminish the security of Kyber but whose result were strongly questioned by
[DP23b] who showed that the crucial independence assumptions underlying their analysis
were flawed. These independence assumptions can be viewed as the lattice-based counterpart
of the aforementioned code-based independence assumptions that where traditionally used
for the analysis of dual attacks. In particular, we develop new tools to analyze those dual
attacks without these assumptions and use them to show that our attack reduces the security
of Kyber: our attack cost is 3.5/11.9/12.3 bits below the NIST requirements of 143/207/272
for Kyber-512/768/1024 where we used the same cost model as in [SAB+20, MAT22]. The
cost of our attack matches and even slightly improves in some cases the complexities originally
claimed by [MAT22]. This positively settles the recent controversy as to whether a lattice-
based dual-sieve attacks can really work as expected.
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Details and chapters outline

Code-based

Let us give more details about our contributions. The code-based dual attacks we devise can
be seen as the analog of the recent lattice-based dual attacks: it benefits from a splitting
strategy that was originally suggested but not exploited in [DT17b] and is also central to the
competitiveness of recent lattice-based dual attacks [Alb17, EJK20, GJ21, MAT22]. We split
the support J1, nK in two complementary subparts P and N and compute dual vectors h of
that are of low-weight only on the part N , each dual vector yields a noisy linear combination
of the error eP :

⟨y,h⟩ = ⟨c+ e,h⟩ = ⟨eP ,hP⟩+ ⟨eN ,hN ⟩ . (1)

This is an LPN sample with secret eP and noise ⟨eN ,hN ⟩. The rationale is to increase the size
of P to naturally decrease the weight of hN , thus increasing the bias ε of ⟨eN ,hN ⟩ and hence
decreasing the number of required dual vector to recover eP . Simplifying a bit, one expects
to require poly (n) /ε2 such vectors where one can show that ε is exponentially small. This,
of course, comes at an increased cost to actually recover eP but we can now balance it with
the number of required dual vectors. We compute those sparse dual vectors using techniques
coming from the ISD’s and actually recover the secret eP with techniques coming from LPN
solvers, that is with Fast Fourier Transform as used in [LF06] or a decoding technique [GJL14]
to leverage the sparseness of the secret eP by compressing it with the help of a linear code. We
call the former RLPN (Reducing Decoding to LPN) and the latter (which is a generalization
of the former) double-RLPN. Note that the term LPN appearing in the name of our attack is
motivated by the fact that we reduce decoding a code of constant rate to decoding some very
long code of reduced dimension. But our samples are not distributed as true LPN samples,
this is the reason why our dual attack suffers from technical complications in the algorithms
and the analysis. In a nutshell, this all boils down to the fact that the considered dual vectors
have a vast amount of intersection in their support making the ⟨eN ,hN ⟩’s dependent of
each others. This is a difficulty that also appeared in the analysis of statistical decoding,
necessitating independence assumptions for its analysis [Ove06, DT17a] : the ⟨eN ,hN ⟩’s are
supposed to be mutually independent. We do not use those assumptions in our analysis. The
outline of our code-based contributions chapters is given as follows.

• In the contribution Chapter 4 we provide the first assumption-free proof of a slight vari-
ant of statistical decoding. We do this with a second-order argument to give concentra-
tion bounds for estimating the bias of ⟨y,h⟩. This bias is the key quantity underlying
the hardness and behavior of all dual attacks.

• In the contribution Chapter 5 we present RLPN. Notably, the introduction of this
splitting strategy makes our analysis rely on some exponential strengthening of the
second-order behavior of the aforementioned bias. We show experimentally that the
standard independence assumptions cannot be used to that extend. To replace these
assumptions, we state a new conjecture that we thoroughly validate experimentally
with a new model. It relies on a dual expression for the bias coming from the Poisson
summation formula and can be thought of as the code-based cousin of the duality
formula used in the analysis of the first lattice-based dual attack [AR04].

• In the contribution Chapter 6 we present our best dual attack, double-RLPN. This
chapter in essence contains a generalization of the two previous chapters. Reading this

12



chapter without reading the two previous ones is possible for a reader familiar with the
topic.

• In the contribution Chapter 7 we present a slightly tweaked variant of double-RLPN
which has essentially, up to polynomials factors, the same performance as the original
double-RLPN algorithm but which we can fully prove, bypassing the need for any con-
jecture. Its analysis relies solely on the second-order concentration properties of the
bias.

Those chapters are backed up by three state-of-the-art chapters starting from a short pre-
liminary Chapter 1 providing the basics in coding theory. This is followed by Chapter 2
presenting the state of the art of generic decoders: we present there some ISD’s and statistical
decoding. This chapter contains as a contribution the correction of the analysis of [BM18].
Some of these ISD’s will later be used inside our dual attack to produce the sparse dual
vectors but reading this chapter is not necessary to understand our dual attack contribution
chapters as we will use them almost as black boxes. The last state-of-the-art chapter is given
by Chapter 3 where we present the LPN solvers that we will use to build our attack.

Lattice-based contributions

The new lattice-based dual attack we devise is in the same spirit as recent lattice-based
dual attacks but we slightly improve it: our attack benefits from the same splitting strategy
as given by Eq. (1) but in the LWE context, namely the vectors are in Zq and are of small
Euclidean norm. While recent attacks [GJ21, MAT22] reduce the cost of recovering the secret
eP with different modulus switching techniques we use a generalization in the q-ary setting
of the secret compressing technique that we used in double-RLPN to diminish the dimension
and which was already used in [GJS16] in some related context. Here is the outline of our
lattice-based contributions chapters.

• In contribution Chapter 8 we make a brief introduction to the LWE problem and lattice-
based cryptography. As a contribution we develop the tools to analyze lattice-based dual
attacks without using the flawed independence assumptions. Basically we do that by
proposing a new model to predict the exponential behavior of key quantity underlying
the behavior of these attacks in some simple case scenario. This key quantity is the
”bias” (in some sense adapted to Zq) of ⟨y,h⟩. This is essentially the lattice-based
analog of the conjecture we devised in the code-based Chapter 5 for RLPN.

• In contribution Chapter 9 we present our new dual attack against LWE and analyze it
by generalizing the tools given in the previous chapter. We assess the complexity of our
attack against Kyber.

Software

Finally, in Chapter 10 we give the documentation for an open source software we made to
reproduce some claims made in Chapter 8 and Chapter 6. Its main purpose is to verify our
model about the exponential behavior of the bias of ⟨y,h⟩ in codes and lattices. This also
contains a mean to reproduce our asymptotic complexity results given in Fig. 3. As our
algorithms have a lot of parameters, those asymptotic complexity exponents were obtained
through extensive numerical optimization.

13
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Notation

General notation

Sets

Z The ring of integers
N The set of non-negative integers
R The field of real numbers
C The field of complex numbers
Fq The finite field with q elements where q is a prime power.
Zq The quotient ring Z/qZ of integers modulo q
Ja, bK = {i ∈ Z : a ⩽ x ⩽ b } The set of integers between a and b, both included.
[a, b] = {x ∈ R : a ⩽ x ⩽ b } The set of real numbers between x and y, both included.
]a, b[= {x ∈ R : a < x < b } The set of real numbers between x and y, both excluded. |x| is
the absolute value of x ∈ R.

Operations on sets

|X| The cardinality or number of elements in the set X.
A \B = { a ∈ A : a ̸= B}
A+B = { a+ b : a ∈ A, b ∈ B}
A×B = {(a, b) : a ∈ A, b ∈ B}
X The complement of X: when X is a subset of Y , X = { y ∈ Y : y ̸= X} is the complement
of X in Y .
X+ The subset of X composed of the non-negative elements of X

Operations on vectors and matrices

All the vectors are in row form. A matrix with 1 column and n rows is called a syndrome.
xi the i’th coordinate of the vector x
xI the projection of the vector x on the coordinates given by I ⊂ J1, nK.
⟨x,y⟩ =∑n

i=1 xiyi the dot-product of two length n vectors x and y.
Supp (x) = {i ∈ J1, nK : xi ̸= 0 } the support of a length n vector x.
A⊺ Transpose of the matrix A
x⊺ Transpose of a length n vector is a matrix with n rows and 1 column (a syndrome).
AI The matrix A where we keep only the columns given by I
AI×J The matrix A where we keep only the columns given by I and the rows given by
J .
In is the identity matrix with n rows and columns.
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0n is the null vector of length n.
rank (A) is the dimension of the row space of A.
dim (C) is the dimension of the linear space C.

Norm and ball

|x| = |{ i ∈ J1, nK : xi ̸= 0}| The Hamming weight of the length n vector x.

||x|| =
√∑n

i=1 x
2
i The Euclidean norm of the length n vector x. When x ∈ Zn

q the coordinates

xi of x are seen as integers such that |xi| ⩽ q/2
||x||∞ = maxi∈J1, nK xi The infinity norm of the length n vector x
Snt = { x ∈ Fn

2 : |x| = t} The Hamming sphere of radius t.
Ballnt = { x ∈ Rn : ||x|| ⩽ t} The Euclidean ball of radius t.

Standard functions

log2 is the logarithm in base 2. exp is the exponential function. e is Euler’s number. ⌊x⌉ is
the integer that is the nearest to x. ⌊x⌋ is greatest integer that does not exceed x. ⌈x⌉ is the
smallest integer that is not less than x. a%q is a modulo q, sometimes written as a (mod q).
n! = n(n− 1) · · · 1 is the factorial of n.
1A is the indicator function of the set A, namely 1A (x) = 1 if x ∈ A otherwise 0.(
n
k

)
= n!

k!(n−k)! is the binomial coefficient. In particular
(
n
k

)
= |Snk |.

h (x) = −x log2 (x)− (1− x) log2 (1− x) binary entropy function. h−1 () is the inverse of h ()
on [0, 1/2].

Asymptotic notation

Definition 3. X ⊂ Nn and let f : X → R+ and g : X → R+ be two functions. We write that

• f ∈ O(g) if there exists a constant C > 0 such that for any x ∈ X we have that
f(x) ⩽ C g(x)

• f ∈ Ω (g) is there exists a constant C > 0 such that for any x ∈ X we have that
f(x) ⩾ C g(x)

• f ∈ Θ(g) if there exists a constant C > 0 such that for any x ∈ X we have that
g(x)/C ⩽ f(x) ⩽ C g(x)

• f ∈ o(g) if for every ε > 0 there exists N > 0 such that for any x ∈ X such that
|| x||∞ > N then f(x) ⩽ εg(x).

• f ∈ ω (g) if for every W > 0 there exists N > 0 such that for any x ∈ X such that
|| x||∞ > N then f(x) ⩾W g(x).

• f ∈ Õ(g) if there exists two constants C,α > 0 such that for any x ∈ X we have that
f(x) ⩽ C || x||α∞ g(x).
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• f ∈ Θ̃ (g) if there exists two constants C,α > 0 such that for any x ∈ X we have that
g(x)/ (C || x||α∞) ⩽ f(x) ⩽ C || x||α∞ g(x)

• f ∈ Ω̃ (g) if there exists two constants C, α > 0 such that for any x ∈ X we have that
f(x) ⩾ C || x||α∞ g(x)

• f ∈ poly (g) if there exists two constants C, α > 0 such that for any x ∈ X we have
that f(x) ⩽ C g(x)α

We sometimes replace the ∈ by an equality = symbol.

To stay simple and concise, we often use in the intermediate lemmas and for independent
results, the multivariate variant of these landau notations while making the function implicit.
For example the following will be used.

Proposition 1. Let n ∈ N and let k ∈ N be such that k ⩽ n. We have that
(
n

k

)
= Θ̃

(
2nh(k/n)

)

Remark 1. Formally, the previous proposition claims that, if X is the subset of couples (n, k)
of N2 such that k ⩽ n and f : X → R is the function defined as f(n, k) =

(
n
k

)
and g : X → R

is the function defined as g(n, k) = 2nh(k/n) then we have that f = Θ̃ (g) .

We will also often use the univariate counterpart of these landau notations, in particular
when giving our main theorems. We sometimes emphasize that this unique variable grows to
infinity even though it is already redundant from the definition.

Proposition 2. Let n ∈ N be a variable growing to infinity, let τ be an implicit function of n
with value in [0, 1] and let k be the implicit function of n defined as k = ⌊τn⌋. We have that

(
n

k

)
= Θ̃

(
2nh(τ)

)
.

We add that the Θ̃ () does not depend on τ .

Remark 2. In this case we claim that for any function τ : N→ [0, 1] we have that f = O(g)
where f : N → R is the univariate function defined as f(n) =

(
n

⌊τ(n)n⌋
)
and g : N → R is the

univariate function defined as g(n) = 2nh(τ(n)). The last sentence of the proposition means
that in fact there exists a constant C > 0 such that for any τ : N → [0, 1] we have that
∀n ∈ N, f(n) ⩽ C g(n).

Probabilities

We write that X ∼ D to denote that the random variable X is distributed/sampled according
to the distribution D. We sometime say that X follows D. We use i.i.d as an abbreviation
for ”identically and independently distributed”. We write that x ∼ Dn to specify that x is a
random vector of length n and where each coordinate is drawn i.i.d according to D.

We write PX∼D (X = x) to denote the probability that some random variable X dis-
tributed according to D is equal to x. When X is a random variable defined in the context
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we simply write P (X = x) or sometime PX (X = x). If X and Y are two random variable
we denote by P (X = x | Y = y) the probability that X = x conditioned on the event that
Y = y. We denote by E (X) and Var (X) the expectation and variance respectively of X.
The survival function of X is defined as f(x) = P (X ⩾ x). We denote by U (S) the uniform
distribution over a set S. The bias bias (X) of a random variable X taking values in {0, 1 }
is defined as bias (X)

def
= P (X = 0)− P (X = 1).

Proposition 3 (Markov inequality). For any α and any nondecreasing nonnegative function
f such that f(α) > 0 and any random variable X we have that

P (X > α) ⩽
E (f(X))

f(α)
.

Corollary 1 (Bienaymé–Chebyshev inequality). For any random variable X and any α > 0
we have

P (|X − E (X)| > α) ⩽
Var (X)

α2
.

Probability distributions

Ber (p) is the Bernouilli distribution of parameter p. By definition if X ∼ Ber (p) then
P (X = 1) = p and P (X = 0) = 1− p.
Binomial (n, p) is the Binomial distribution with n trials with success probability p. By def-
inition if X ∼ Binomial (n, p) then P (X = i) =

(
n
i

)
pi (1− p)n−i.

Poisson (λ) is the Poisson distribution of parameter λ. By definition if X ∼ Poisson (λ) then

P (X = k) = λke−λ

k! . The mean and variance of X are λ.
Exponential (λ) is the Exponential distribution of parameter λ. By definition ifX ∼ Exponential (λ)
then P (X ⩾ x) = e−λx. The mean of X is 1/λ.
N
(
µ, σ2

)
is the normal distribution with mean µ and standard deviation σ. By definition if

X ∼ N
(
µ, σ2

)
the probability density function of X is p(x) = 1√

2πσ2
e−(x−µ)2/(2σ2).
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State of the art for decoding
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Chapter 1

Preliminaries in coding theory

Summary

In this short chapter we give a minimal set of definitions and essential properties related to
codes and random codes that we will use profusely throughout this thesis. A more in depth
coverage on error correcting codes can be found in [HP03] and a more targeted presentation
regarding random codes and the decoding problem can be found in [Bar97] or the lecture
notes [Deb23]. Our presentation is mostly technical, we first give in Section 1.1 the basic
definitions related to codes, in Section 1.2 we give the basic operation one can make on them,
in Section 1.3 we give a brief overview on random codes and their properties and finally in
Section 1.4 we present quickly the decoding problem.
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1.1. Essential definitions

1.1 Essential definitions

The main object of study in this thesis will be binary linear codes.

Definition 4 (Binary linear code). We say that C is a binary linear code of length n and
dimension k if it is a linear subspace of dimension k of Fn

2 . We say in short that C is an

[n, k]-linear code and denote by C [n, k] the set all of [n, k]-linear codes. We call R
def
= k/n the

rate of the code. The elements of C are called codewords.

In majority, the codes we handle in this thesis are binary linear codes. This is the case
basically for all our code-based related chapters and only our last lattice related chapter will
handle q-ary linear codes, that is, q is a prime power and C is a linear subspace of Fn

q . To
minimize the number of notations here we only describe here the binary case but all definitions
and proposition trivially adapt to the q-ary casator or by a parity-che by replacing 2 by q in
the following definitions and propositions.

Notation 1 (Notation valid in all this thesis). In this thesis, all codes handled, unless ex-
plicitly specified otherwise are binary linear codes. So when we say that ”Let C be a code” we
mean that C is a binary linear code.

We give here the definition of the dual of a code. It will be central in this thesis.

Definition 5 (Dual of a linear code). The dual of binary linear code C is defined as

C⊥ = {h ∈ C : ⟨h, c⟩ = 0, ∀c ∈ C}

where ⟨, ⟩ is the standard dot product in F2, namely given two vectors x and y in Fn
2 it is

given by ⟨x,y⟩ def= ∑n
i=1 xiyi ∈ F2.

Clearly, we have the following relations between the code and its dual.

Fact 1 (Relations of a code with its dual). Let C be a linear code of dimension k and length
n. We have that

• C⊥ is a linear code of dimension n− k and length n.

• C =
(
C⊥
)⊥

.

This motivates the following definition.

Definition 6 (Codimension of a code). The codimension of a code is the dimension of the
dual of the code.

Now, every code, seen as a subspace benefits from two efficient description, either by a
generator or by a parity-check matrix.

Definition 7 (Generator matrix and parity-check matrix). Let n, k ∈ N with k ⩽ n and let C
be a binary linear code of length n. We say that G ∈ Fk×n

2 is a generator matrix of the code
C if

C = {mG : m ∈ Fk
2}.

We say that H ∈ F(n−k)×n
2 is a parity-check matrix of the code C if

C = {c ∈ Fn
2 : Hc⊺ = 0}.
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1. Preliminaries in coding theory

It is easy to go from one to the other: with basic linear algebra we can compute in time
poly (n) a parity-check matrix from a generator matrix, and conversely and each is in fact
linked in the following way.

Fact 2. If G is a generator matrix of a linear code C then it is a parity-check matrix of the
code C⊥. Conversely, if H is a parity-check matrix of a C then it is a generator matrix of C⊥.

Definition 8 (Information set). Let C be a linear code of length n and dimension k. Let
I ⊂ J1, nK. We say that I contains an information set of C if

dim ({cI : c ∈ C}) = k.

If |I | = k we say more precisely that I is an information set of C.

One can easily check that I is an information set of C by checking that (G)I is of rank
k or alternatively that (H)I is of rank n− k.

A code C naturally partition the space Fn
2 into 2n−k cosests.

Definition 9 (Coset). Let C be code of length n and y be a vector of Fn
q . We say that

C + y
def
= {c+ y : c ∈ C}

is a coset code of C.

Each coset can be uniquely identified with its syndrome, as defined bellow.

Definition 10 (Syndrome). Fixing H ∈ F(n−k)×n
2 a parity-check matrix of a binary linear

code C, we say that a vector y ∈ Fn
2 has syndrome s ∈ F(n−k)×1

2 if and only if

Hy⊺ = s.

Observe that by definition the codewords are exactly the vectors with null syndrome.

Last, we will often need in this thesis to count the number of codewords in a code or a
coset code which are of a certain given Hamming weight, hence the following.

Definition 11 (Weight enumerator). Let S ⊂ Fn
2 . We call the weight enumerator of S the

function give associates for each t ∈ N the number of elements of S of Hamming weight t.
Namely, we define

Nt (S) def
=
∣∣∣S
⋂
Snt
∣∣∣ .

1.2 Algebraic operations on linear codes

We present here how the basic operations and construction one can make on linear codes.
As a vast majority of the algorithms we devise in this thesis rely on these operations we also
quickly devise how this is done algorithmically so that our algorithms are non-ambiguous.
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1.2. Algebraic operations on linear codes

1.2.1 Puncturing

We will often consider here the punctured of a code, namely the code where we only keep
some positions.

Definition 12 (Puncturing a code). Let C be a code of length n and let I ⊂ J1, nK. We
define CI , the code C punctured on I as

CI
def
= {cI : c ∈ C}.

As long as we do not puncture too much, this operation leaves the dimension untouched.

Fact 3. Let C be a linear code of length n and dimension k. I contains an information set
of C if and only if CI is a linear code of length |I | and dimension k.

1.2.1.1 Algorithm

In this thesis, puncturing C on I will only be performed when the code C is given as a

parity-check matrix H ∈ F(n−k)×n
2 and when furthermore I contains an information set of

C. This is done in polynomial time by computing a partial Gaussian pivot on the columns of

H given by I . Namely, we compute an invertible pivot matrix J ∈ F(n−k)×(n−k)
2 that is such

that (JH)I =

(
I|I |
0

)
and output a data structure containing the parity-check matrix of the

code CI composed of the last n− k −
∣∣I
∣∣ lines of (JH)I .

1.2.2 Shortening

One can also build another code by considering the code which contains all the codewords
that are zero on some coordinates (which we then forget).

Definition 13 (Shortening a code). Let C be a code of length n. We define CI , the code C
shortened on N as

CN def
= {cN : c ∈ C and cN = 0}.

In fact, shortening a code can be seen as puncturing the dual of the code.

Lemma 1. (Relation between shortening and puncturing [HP03, Theorem 1.5.7]) Let C be
a linear code of length n and let N ⊂ J1, nK be a set. We have that

CN =
((
C⊥
)

N

)⊥

Using this relation along with Fact 3 it is clear that essentially the dimension of the
shortened code decreases by the number of deleted coordinates.

Fact 4. Let C be a linear code of length n and dimension k and N ⊂ J1, nK be a set. Then CN

is a linear code of length |I | and dimension k−|I | if and only if N contains an information
set of C⊥.
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1. Preliminaries in coding theory

1.2.2.1 Algorithm

Algorithmically in this thesis, shortening C on N will only ever be performed when the code
C by a generator matrix G and when N contains an information set of C⊥. This is done in
polynomial time by computing a partial Gaussian pivot on the columns of G given by N .

Namely, we compute an invertible pivot matrix J ∈ Fk×k
2 that is such that (JG)N =

(
I|N |
0

)

and output a data structure containing the generator matrix of the code CN composed of the
last k −

∣∣N
∣∣ lines of (JG)N .

1.2.3 Lifting onto a code

We will profusely use the fact that knowing the value of a codeword on an information set of
the code, by definition, uniquely identifies that codeword. More, we can go from one to the
other with a lifting operation that is a linear and that we name in the next definition.

Definition 14 (Lifting an element). Let C be a linear code of length n and let I ⊂ J1, nK be
a set containing an information set of C. We define Lift (C, I , v) the linear function that
for each v ∈ CI associates

Lift (C, I , v)
def
= c (1.1)

where c is the unique codeword of C which is such that cI = v. We call c the lift of v. Last,
we define

Lift (C, I )
def
= R where R ∈ F(n−|I |)×|I |

2 is the unique matrix such that ∀c ∈ C, cI = cI R⊺.

1.2.3.1 Algorithm

Algorithmically in this thesis, this lifting operation will only ever be performed on codes C
which are given as a F(n−k)×n

2 parity-check matrix H. This is done in polynomial time by
computing a partial Gaussian pivot on the columns of H given by I . That is we compute
an invertible matrix J ∈ Fk×k

2 whose entries only depends on HI and which is such that

(JH)I =

(
I|I |
0

)
. In that case the matrix Lift (C, I ) is given by the first

∣∣I
∣∣ lines of

(JH)I .

1.3 Random binary linear codes

We give here some basic properties on random binary linear codes.

1.3.1 Randomness model

Let us give precise meaning to what we will mean by random codes in this thesis, we consider
the 3 following standard definitions.

Definition 15. We define the following distributions:
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1.3. Random binary linear codes

1. We name UH (n, k) the distribution on the linear codes of length n obtained by choosing

its parity-check matrix H uniformly at random in F(n−k)×n
2 . When C ∼ UH (n, k) we

denote by H (C) the underlying parity-check matrix H ∈ F(n−k)×n
2 .

2. We name UG (n, k) the distribution on the linear codes of length n obtained by choosing
its generator matrix G uniformly at random in Fk×n

2 . When C ∼ UG (n, k) we denote
by G (C) the underlying generator matrix G ∈ Fk×n

2 .

3. We name U (n, k) the uniform distribution on the linear codes of length n and dimension
k, that is U (C [n, k]). It is obtained by choosing its parity-check matrix H uniformly at

random among the matrices of F(n−k)×n
2 of rank n− k.

Because a generator matrix of the code is the parity-check matrix of the dual one can
interchange these distributions in the following way.

Fact 5. Let n, k ∈ N with k ⩽ n. We have that

C ∼ UG (n, k)⇔ C⊥ ∼ UH (n, n− k) , and, C ∼ U (n, k)⇔ C⊥ ∼ U (n, k) .

It is easy to see that those distributions are closely related, up to rank default the distribu-
tions are the same. Because a k× n random binary matrix has rank default with probability
O
(
2−(n−k)

)
we directly have that the statistical distance between those distributions is close.

Proposition 4 (Statistical distance between the distributions). The statistical distance be-
tween UH (n, k) and U (n, k) is

∆(UH (n, k) , U (n, k)) = O
(
2−k
)

Using the same argument, this allows to see basically that any size bigger than k is an
information set of the code with overwhelming probability.

Fact 6 (Probability of being an information set). Let I be a fixed subset of J1, nK. For any
of the random models considered in Definition 15, if |I | = k+ω (1) then I is an information
set of C with probability 1 − o(1), if |I | = k then I is an information set with probability
Ω (1).

One easily see, for example by looking at the algorithm given in Section 1.2, how those
distributions interacts with lifting, puncturing and shortening.

Fact 7 (Distributions related to lifting, puncturing and shortening.). If C ∼ UH (n, k) and
I is a fixed subset of J1, nK then conditioned on the event that I contains an information
set of C we have that

• CI ∼ UH (|I | , k).

• Lift (C, I ) ∼ U
(
F(|I |)×|I |
2

)

If C ∼ UG (n, k) and N is a fixed subset of J1, nK then conditionned on the event that N
contains an information set of C⊥ we have that

• CN ∼ UG
(
|N | , k − |N |

)
.

• Lift
(
C⊥, N

)
∼ U

(
F(|N |)×|N |
2

)
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1. Preliminaries in coding theory

1.3.2 First and second order statistics

We will very often use the following standard probabilities that some fixed element belongs
to a random code.

Proposition 5. Let x,y ∈ Fn
2 \ {0} be fixed vectors such that x ̸= y. Let C ∼ UH (n, k) we

have that

P (x ∈ C) = 1

2n−k
, P (x ∈ C, y ∈ C) =

(
1

2n−k

)2

, (1.2)

Proof. Let us denote by H = H (C) the parity-check matrix used to construct the code C. We
have that x ∈ C if and only if Hx⊺ = 0, thus

P (x ∈ C) = P (Hx⊺ = 0)

=
1

2n−k

where in the last line we used the fact that H ∼ U
(
F(n−k)×n
2

)
and that x⊺ is a fixed non-null

vector of Fn
2 . Now the second equality comes from the fact that

P (x ∈ C, y ∈ C) = P (y ∈ C | x ∈ C)P (x ∈ C)

= P (Hy⊺ = 0 |Hx⊺ = 0)
1

2n−k

=

(
1

2n−k

)2

where in the last line we used the fact that Hx⊺ and Hy⊺ are independent variables. Indeed
as x and x are fixed vectors such that y ̸= x and y ̸= 0, there exists, possibly interchanging
the role of x and y, at least one position i such that yi = 1 and xi = 0 which gives that

Hy⊺ = Hi +H\i
(
y\i
)⊺
,

Hx⊺ = H\i
(
x\i
)⊺
.

Each are independent since all the columns of H are taken independently.

1.3.3 Weight enumerator and its second-order concentration

The previous proposition directly yields that the covariance of 1x∈C and 1y∈C , this allows to
easily compute the first two moments of say the weight enumerator of the code for example.

Lemma 2 (First two moment of the weight enumerator). Let n, k, t with t ̸= 0 and let y ∈ Fn
2

and let C ∼ UH (n, k). We have that

E (Nt (C + y)) =

(
n
t

)

2n−k

Var (Nt (C + y)) ⩽

(
n
t

)

2n−k
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Proof. This is a direct consequence of Proposition 5. Starting from the fact that

Nt (C + y) =
∑

x∈Sn
t

1x∈C+y

and using the linearity of the expectation we have that

E (Nt (C + y)) =
∑

x∈Sn
t

P (x ∈ C + y)

=

(
n
t

)

2n−k
(Proposition 5) .

The variance is obtained by

Var (Nt (C + y)) =
∑

x∈Sn
t

Var (1x∈C+y) +
∑

x, z∈Sn
t : x̸=z

Cov (1x∈C+y, 1z∈C+y)

⩽
∑

x∈Sn
t

P (x ∈ C + y) +
∑

x, z∈Sn
t : x ̸=z

P (x ∈ C + y, z ∈ C + y)

=

(
n
t

)

2n−k
+ 0 (Proposition 5) .

In turn, using Byenemé-Chebychev inequality on these moments allows devising second-
order bounds on the weight enumerator.

Proposition 6 (Concentration of the weight enumerator). Let n, k, t ∈ N and let f be a
positive function. Let y ∈ Fn

2 and let C ∼ UH (n, k). We have that,

P



∣∣∣∣∣Nt (C + y)−

(
n
t

)

2n−k

∣∣∣∣∣ ⩾ f(n)

√ (
n
t

)

2n−k


 ⩽

1

f(n)
.

1.3.4 Gilbert-Varshamov distance

The so called Gilbert-Varshamov is the expected minimum Hamming distance of the code,
or, in the case of linear codes, the expected Hamming weight of the minimum non-zero
weight codeword. It is readily seen, from Lemma 2 that the following definition captures this
interpretation.

Definition 16 (Gilbert-Varshamov distance). Let n, k ∈ N be such that k ⩽ n. We define
the Gilbert-Varshamov distance dGV (n, k) as the largest integer such that

dGV(n, k)∑

i=0

(
n

i

)
⩽ 2n−k.

One can capture the asymptotic behavior of this quantity using the standard binomial
expansion given as follows.
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Figure 1.1: Relative Gilbert-Varshmov distance τGV (R)
def
= h−1 (1−R)

Proposition 7 (Binomial expansion). Let n, k ∈ N with 0 < k < n. We have that

(
n

k

)
= Θ̃

(
2n h(k/n)

)
. (1.3)

We denote, with a slight abuse in the definition, the relative Gilbert-Varshmov distance
as follows.

Definition 17 (Relative Gilbert-Varshmov distance). Let R ∈ [0, 1]. We define the relative
Gilbert-Varshamov distance at rate R, namely τGV (R) as

τGV (R)
def
= h−1 (1−R)

where h−1 () is the inverse on [0, 1/2] of the binary entropy function h (x)
def
= −x log2 (x) −

(1− x) log2 (1− x).

This function is plotted in Fig. 1.1. In particular, by using Proposition 7 and forgetting
about the polynomial factors, we can see that dGV (n, k) and τGV (k/n)n can be interchanged
at will.

Lemma 3. Let R ∈]0, 1[ be an implicit function of n ∈ N and define k
def
= ⌊Rn⌋ and t def

=
⌊τGV (R)n⌋. We have that

(
n

t

)
= Θ̃

((
n

dGV (n, k)

))
= Θ̃

(
2n−k

)

and that
dGV (n, k)

n
= τGV (R) + o(1) .

1.4 The decoding problem

One of the main part of this thesis will be dedicated finding new algorithm to decode linear
code, let us give one of the possible definition of an instance of this problem.
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1.4. The decoding problem

Definition 18 (Decoding problem). We define the decoding problem with parameter (n, k, t)
as the search problem given as follows.

• Input: (C, y) where C is a code given as a generator matrix G ∈ Fk×n
2 of rank k and

y ∈ Fn
2 .

• Output: e ∈ Snt such that y − e ∈ C

The associated decision problem is NP-Complete [BMvT78]. Clearly, and to make a
parallel with our introduction, solving this problem is really just finding an error e of Hamming
weight t whose syndrome match that of y. Indeed, we can compute in polynomial time a
parity-check matrix H from the generator matrix G and use the following fact.

Fact 8. Let C be a linear code and H be a parity-check matrix of C, and y, e two vectors of
Fn
2 . We have that

y − e ∈ C ⇔ He⊺ = Hy⊺.

To say it differently, this is really solving an underdetermined linear system with a con-
straint on the Hamming weight. This constraint makes the problem hard.

Note that, contrary to the telecommunication variant of this problem where we want to
recover the closest codeword to a vector, in code-based cryptography, usually breaking a
scheme only requires to produce any solution that is close enough, hence the definition. In
fact, the security of the schemes never rely on the hardness of the worst-case instances but
rather rely on the difficulty of average instances. Many distributions can be considered but
in this thesis we study the most standard and historic average variant of the problem given
as follows.

Definition 19 (Average decoding problem DPH (n, k, t) and DPG (n, k, t).). For any n, k, t ∈
N such that k, t ⩽ n the average decoding problem at distance t, DPH (n, k, t) is defined as:
we are given (C, y) which are chosen as follows:

• The code C is given as its parity-check matrix H that was chosen uniformly at random

in F(n−k)×n
2 , namely C ∼ UH (n, k).

• The noisy codeword y = c+ e is taken by choosing c ∼ U (C) and e ∼ U (Snt ).

We must return a vector e ∈ Snt such that y − e ∈ C. We also define the average decoding
problem DPG (n, k, t) as above but in this case C is taken by choosing its generator matrix G
uniformly at random in Fk×n

2 , namely C ∼ UG (n, k).

Remark 3. Note that both problems DPG (n, k, t) and DPH (n, k, t) are closely related as,
using Proposition 4 we can conclude that any algorithm solving one problem can be turned
into an algorithm solving the other with only a polynomial overhead to construct a generator
matrix from a parity-check matrix (and vice-versa) and a negligible loss in probability of
success due to the negligible statistical distance between the two input distributions.

For the right choices of parameter this problem is conjectured to be hard on average, that
means that for some right choices for n, k, t, all the existing algorithm solving this problem
with non-negligible probability run in time 2Ω(t). The complexity of the best decoders, that
is, algorithms solving this problem with non-negligible probability, are used to choose the pa-
rameters of code-based encryption scheme such as HQC [AAB+22b], which is now becoming
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a NIST standard, or BIKE [AAB+22a] or the signature scheme SDitH [AMBB+24] that is
currently in the second round of the NIST additional signature scheme competition. Notably
the security of this last scheme rely on the difficulty on the decoding problem at the afore-
mentioned Gilbert-Varshamov distance. It can readily be seen from the definition that this
is the distance where we expect essentially (up to polynomial factors) that there exists one
non-planted solution to the decoding problem.

Fact 9. Let n, k and t
def
= dGV (n, k). Let C ∼ UH (n, k) and let y ∈ Fn

2 . We have that

E (|{e ∈ Snt : y − e ∈ C}|) = Θ̃ (1) .

As we will see later, this distance is where the decoding problem is the hardest. The rough
intuition for that is that because we are looking for any solution and not one in particular,
when the distance grows further than the Gilbert-Varshamov distance the number of solutions
explodes, making the problem easier. It is traditional to compare the algorithm at this hardest
distance as a first step to compare the algorithms between each others, this will mostly be
our regime of interest in this thesis. However, we will also give some more details about the
hardness of the problem in other parameter regime when presenting decoders in the next
chapter.
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State of the art of generic decoders
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Summary

We present here the state of the art of generic decoders. We focus our presentation on the
algorithms tailored to classically decode random binary linear codes of constant rates and at
a distance that grows linearly with the codelength but which is always less than or equal to
the Gilbert-Varshamov distance. We also focus our presentation on the best time complexity
exponent rather than looking at time-memory tradeoffs. This chapter is composed of two
sections. The first is dedicated to exposing some Information Set Decoders or in short ISD.
These have been for 60 years the dominant and most efficient family of decoders in our regime
of interest. We will use some of them later as a subroutine for the dual attacks we will devise
in our contribution chapters. As a contribution, we found an error in the original analysis
of the state of the art of these ISD, namely [BM18]. We show that this leads to a very
significant underestimation of the time complexity of the algorithm. We make a corrected
analysis and give as such the new baseline for the complexity of the state of the art of ISD’s.
The second section of this chapter is dedicated to exposing the first dual attack in coding
theory: statistical decoding, it was shown to be completely uncompetitive compared to the
ISD’s. Overall during these 60 years of research these decoders have improved in the high to
moderate rate regime but no real progress has been made in the low-rate regime.
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Figure 2.1: The asymptotic complexity exponent relative to the codelength n (growing to
infinity) of some decoders to decode random linear codes of rate R = k/n at the Gilbert-
Varshamov distance. More precisely we plotted the α’s such that the time complexity of each
of those algorithms is some 2α(1+o(1))n to solve the average decoding problem DPH (n, k, t)

(defined in Definition 19) when k
def
= ⌊Rn⌋ and t

def
= ⌊τGV (R)n⌋. The complexity claim

regarding [BM18] was obtained with Theorem 2. The black curve is the lower bound given
by [DT17a] of statistical decoding of [Jab01].
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2.1. Information Set Decoders

2.1 Information Set Decoders

Starting from Prange [Pra62], information set decoders have been for 60 years the leading
family of decoders to decode codes of constant rate. The name comes from the fact that all
these decoders leverage that knowing the value of the secret codeword on an information set
of the code allows recovering the whole codeword, and hence decode. Say we are given a
linear code C of dimension k and length n and some noisy codeword y = c+ e, where c ∈ C
and e is an error vector of low Hamming weight, say t, and that we want to decode this
noisy codeword. In a nutshell Prange idea is to choose k coordinates of the support J1, nK,
this indeed forms an information set of C with good probability, and bet that, on those k
coordinates the error vector e is zero. This is a meaningful bet because we know that the
error is of low Hamming weight. If the bet was good, it can decode with basic linear algebra.
Basically Prange iterates this, choosing each time k random positions, until eventually this
bet is valid and the solution can be recovered. Still, in our regime of interest, this requires an
exponential number of iteration, this represents the source of the hardness of this algorithm.
This algorithm was widely improved over the years, to name a few [LB88, Ste88, Dum89,
MMT11, BJMM12, MO15, BM17, BM18, Ess23, GJN24, DEEK24], the state of the art is
given by [BM18]. All those improved algorithms share with the Prange algorithm the fact
that they make a bet on the value of the error on a few number of positions, k or more, but
the improvement comes by relaxing the bet and allowing a few number of position of the
error to be non-zero on the selected positions. The goal is then to try to determine those
erroneous positions in the most efficiently way. This is done typically with some collision or
near-collision based techniques.

Note, as we will see later, that all these information set decoders can be turned into a
procedure to compute low weight vectors of the code, or more tailored to our purpose in
this thesis, low weight dual vectors. In fact, all dual attacks we devise will need procedures
which compute dual vectors somewhat efficiently. We chose to analyze our attacks when
the building block (which we will later call subroutines) of [Dum89, BJMM12] are used to
compute the low weight dual vectors. This choice is slightly arbitrary because we could also
have used more efficient routines such as [MO15, BM17, BM18, DEEK24] but, as we will see
the subroutines of [Dum89, BJMM12] very naturally can be turned to compute all the dual
vectors of a certain weight, this simplifies the analysis of our dual attacks.

We present in detail these two algorithms. We also present the state of the art [BM18]
because we found a flaw in its analysis which leads, as we show, to a significant underesti-
mation of the complexity of the algorithm. We correct it and compute its new asymptotic
complexity exponent, yielding the baseline for the complexity of the state of the art of the
ISD’s.

In the body of the text of the coming subsections we use the following notation.

Notation 2. We consider C a binary linear code of length n and H ∈ F(n−k)×n
2 a parity-check

matrix of C. We want to decode at distance t the noisy codeword y = c+ e where c ∈ C and
e ∈ Snt is an error vector of low weight t ⩽ n/2. When probabilities are involved, one can see
C, y as an instance of DPH (n, k, t), that is C ∼ UH (n, k) is chosen by taking H uniformly

at random in F(n−k)×n
2 and e ∼ U (Snt ). When asymptotic notations are used, k, t are implicit

function of n where n is a parameter growing to infinity.
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2.1.1 Prange decoder

The idea behind the Prange decoder [Pra62] which is the first information set decoder is that
having access to a set subset of the support N ⊂ J1, nK which does not contain any errors,
that is which is such eN = 0, and contains an information set of the code allows to easily
solving the decoding problem. Indeed, because N is error free we have that yN = cN and
because N contains an information set we can simply lift yN onto C to recover the whole
codeword c. The idea is then simply to iterate, choosing each time a different subset N until
one verifies this. It is easy to see that, up to polynomial factors, it is optimal to choose N of
size exactly k, the dimension of the code C.

Algorithm 1 Prange decoder

Name: ISD-Prange(C, y, t)
Input: C, y, t
1: for i = 1 · · ·Niter do ▷ Niter is exponential

2: N
$←{I ⊂ J1, nK : |I | = k}

3: c̃← Lift (C, N , yN ) ▷ If N is not an information set of C then this procedure fails
making this iteration end earlier

4: ẽ← y − c̃
5: if |ẽ| = t then
6: return ẽ

The time complexity is, up to polynomial factors, the number of iterations we need to
make

Proposition 8. Let n, k, t ∈ N. There exists Niter such that Algorithm 1 finds the original
error e∗ when given an instance of DPH (n, k, t) with probability Ω (1) in time and memory

Time = poly (n)

(
n
t

)
(
n−k
t

) , Memory = poly (n) .

Corollary 2. Let n be growing to infinity and let R, τ be implicit functions of n. Let
k = ⌊Rn⌋ and t = ⌊τn⌋. There exists Niter such that Algorithm 1 finds the original error e∗

when given an instance of DPH (n, k, t) with probability Ω (1) in time and memory

Time = Õ
(
2αPrange(R, τ) n

)
, Memory = Õ(1)

where

αPrange (R, τ)
def
= h (τ)− (1−R)h (τ/ (1−R)) .

Note that we could also show more generally that the Prange decoder solves DPG (n, k, t)
(i.e. returns a solution to the decoding problem and not specifically e∗) with probability Ω (1)
and in time

poly (n)

(
n
t

)
(
n−k
t

) 1

max
(
1,
(
n
t

)
/2n−k

) (2.1)

which is essentially the inverse of the probability of success that we find a given solution to
the decoding problem multiplied by the average number of solutions

(
t
n

)
/2n−k.
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2.1.1.1 Hardest decoding distance

This last equation allows to plot the following Fig. 2.2 which gives the complexity of Prange
to find any solution to a decoding problem as a function of the distance. Notably one can see
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Figure 2.2: Asymptotic complexity exponent α (R, τ), relative to the codelength n of the
Prange algorithm as a function of the relative weight τ when decoding codes of rate R = 0.5.

More precisely α (R, τ)
def
= h (τ)− (1−R)h (τ/(1−R))−max (0, h (τ)− (1−R))

two distinct regime in this figure, one in which the asymptotic exponent is increasing and the
other decreasing at a peak around τ ≈ 0.11. The first represents the injective regime, that
is when we expect that the only solution is the planted one, the complexity increases with τ
as the Prange bet gets less likely to be valid. This is true up until a certain point where the
complexity peaks. This peak coincides with the relative Gilbert-Varshamov distance τGV (R)
which is the distance where we expect that there exists exactly one non-planted solution.
When τ grows even more, the decoding problem is expected to admit even more solutions,
an exponential number of them, this actually makes the problem easier as we are looking for
any solution and not one in particular.

Note also that the asymptotic complexity of all subsequent ISD we present have the same
shape: they peak at the Gilbert-Varshamov distance. Because it is usually at this distance
that the difference of complexity is the biggest it is traditional to compare the complexity of
the new decoders at this point.

2.1.1.2 Polynomial regime

Notably it is easy to see that when t = (n−k)/2 the complexity of the Prange decoder becomes
polynomial. It can be shown directly with the previous equality, but it is insightful here to
rather look at the typical shape of the error produced by an iteration of the Prange decoder.
Forgetting about the setting in which a solution is planted suppose we are given an uniformly
random vector y of Fn

2 and C ∼ UH (n, k) and say a fixed subset I . Then, conditioned on
the event that yI ̸= 0 and that I is an information set of C we have, using Fact 7, that c̃I is

distributed as U
(
Fn−k
2

)
and is independent of yI . By definition of ẽ

def
= y− c̃ this means that

ẽI ∼ U
(
Fn−k
2

)
. Moreover, by construction of c̃ we have naturally that ẽI = 0, thus, ẽ has a

typical weight of (n−k)/2. So we really only have to make a polynomial number of iterations
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to make sure that this weight is obtained. Notably it is also possible to slightly tweak Prange
in order to make its complexity polynomial for any t ∈ J(n − k)/2, n/2K: instead of lifting
yN we can lift yI + r where r is some artificial additional error of weight t − (n − k)/2 to
make sure that the final error is still of typical weight t.

2.1.1.3 When the error weight is sublinear in the codelength

Importantly, the complexity of the Prange decoder when the error weight is sublinear in n is
as follows.

Proposition 9 (Complexity of Prange in the sublinear regime [CS15]). Let n growing to
infinity. There exists Niter an implicit function of n such that for any k, t implicit functions

of n such that t = o(n) and such that R
def
= k/n is bounded away from 0 and 1, then Algorithm 1

solves DPH (n, k, t) with probability 1− o(1) in time

Õ
(
2−t log2(1−R)

)

Quite amazingly even after almost 60 years of research no algorithm is known to strictly
beat the first order exponent (here they are the terms in the exponent which are linear in t) of
the Prange decoder. More precisely, even the most advanced ISD’s have are only marginally
better than Prange in the sublinear regime as they have a time complexity of

poly (n) 2−t log2(1−R)−o(t)

where the o(t) is some positive term [CS15]. It remains a major open question of to devise a
better decoding algorithm in this regime.

2.1.1.4 Behavior at extreme rates

We can show that when decoding codes of extreme rates at Gilbert-Varshamov distance the
Prange decoder really has the complexity of naive enumeration algorithms. In the low rate
regime its complexity is that of the complexity of enumerating all the codewords, namely 2k

and in the high rate regime its complexity is that enumerating the errors, namely
(
n
t

)
which

is of the order of 2n−k when t is at the Gilbert-Varshamov distance.

Proposition 10 (Performance of Prange at the extreme rates). Let R and τ be implicit

functions of n ∈ N and define k
def
= ⌊Rn⌋ and t

def
= ⌊τGV (R)n⌋. There exists Niter an im-

plicit function of n such that the time complexity of Algorithm 1 to solve DPH (n, k, t) with
probability Ω (1) as n grows to infinity is

T
def
= Õ

(
2R(1+o(1))n

)
if R = o(1) , (2.2)

T
def
= Õ

(
2(1−R)(1+o(1))n

)
if R = 1− o(1) . (2.3)

We prove it here quickly here as we have not been able to find a proof of this statement
in the literature (for example Eq. (2.3) can be found without a proof in [Deb23, Proposition
3.0.1]). Let us give the outline of the proof of Eq. (2.3), when R = 1− o(1). Recall that the
complexity of Prange, as given in Corollary 2 is

Õ
(
2αPrange(R, τGV(R))(1+o(1))n

)
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where

αPrange (R, τ)
def
= h (τ)− (1−R)h (τ/ (1−R)) .

As we decode at the relative Gilbert-Varshamov distance we have that τ = τGV (R) =
h−1 (1−R) or alternatively that 1−R = h (τ). By replacing we have that

αPrange (R, τGV (R)) = (1−R) [1− h (τGV (R) /h (τGV (R)))] .

This means that to prove Eq. (2.3) we are only left with proving that h (τGV (R) /h (τGV (R))) =
o(1) when R = 1− o(1). To prove it we use several times the following facts

τGV (R) = o(1) when R = 1− o(1) (2.4)

h (x) = −x log2 (x) (1 + o(1)) when x = o(1) . (2.5)

Let us suppose that R = 1− o(1). We have that

τGV (R)

h (τGV (R))
=

τGV (R)

−τGV (R) log2 (τGV (R)) (1 + o(1))
(Using Eqs. (2.4) and (2.5)) (2.6)

=
1

− log2 (τGV (R)) (1 + o(1))
(2.7)

= o(1) (Using Eq. (2.4)) (2.8)

As such, plugging this last equation into Eq. (2.5) we get that

h

(
τGV (R)

h (τGV (R))

)
= − τGV (R)

h (τGV (R))
log2

(
τGV (R)

h (τGV (R))

)
(1 + o(1))

=
log2 (−1/ log2 (τGV (R)) (1 + o(1)))

log2 (τGV (R)) (1 + o(1))
(1 + o(1)) (Using twice Eq. (2.7))

=
− log2 (− log2 (τGV (R)) (1 + o(1)))

log2 (τGV (R)) (1 + o(1))
(1 + o(1))

= o(1)

which shows our result. Note that due to this log log term the convergence is extremely slow,
this is why one cannot really glimpse in Fig. 2.1 that the Prange algorithm really is the
complexity of the naive error enumeration.

2.1.2 Reducing decoding to decoding a code of higher rate

Idea. As we will see in the next section, we explicit some collision based decoders which
are vastly inefficient compared to Prange decoder for moderate code rates but benefit from
an exponential gain for codes of high rates. Most notably in certain regime those collision
decoders can recover all the solution to a decoding problem with an optimal complexity: it
can be equal to the number of solutions. The first of these was a collision based decoder
presented by Dumer in [Dum86], gaining essentially a square root factor over naive error
enumeration, and thus, in light of Proposition 10, gaining a square root over the Pange
decoder in the high rate regime when decoding at the Gilbert-Varsmahov distance. Later, in
[Dum89] (and to some extent [Ste88, LB88]) used the fact that decoding C can be done by
decoding C punctured in some positions, the point being that for codes of high rates we can
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use the aforementioned collision decoder. The idea is simply to choose a subset of positions
I ⊂ J1, nK and puncturing the code on those positions and basically only looking at the
problem of decoding

yI = cI + eI

in the higher rate code CI . The idea here is to relax the Prange bet by allowing a few
numbers of errors this allows to gain in the probability of success but now we have to solve
an additional decoding problem. Note that as long as I contains an information set of C
then recovering c from eI can be done by lifting yI −eI so basically we need to find all the
solutions to this smaller decoding problem, namely compute (or a subset)

{ ẽI ∈ Snp : yI − ẽI ∈ CI }

and test each ẽI for eI . Importantly so that the bet is valid with higher probability we
want I to be the smallest possible but here contrary to Prange where |I | = k, we have to
take I bigger in order to mitigate the number of solutions to this smaller decoding problem
which can get prohibitively high. Indeed, provided that I contains an information set, this
really is decoding a code of length |I | and dimension k. This introduces an extra parameter
ℓ which defines the extra number of chosen positions, namely |I | = k + ℓ.

Important point: parameter scaling. Note that in the regime of interest in this thesis,
that is when the rate R of the code is constant and the error weight |e| = t grows linearly in
the codelength n, namely t = τn for some τ then the introduced extra parameters ℓ and p also
grow linearly in n. This really allows us the have an exponential impact on the complexity of
the algorithm. Indeed, betting that |eI | = p where p grows linearly in n allows to increase
by an exponential factor the proabability that the bet is valid compared to the full zero
Prange bet. This also means that ℓ must also grow linearly in t (hence n) so that this gain in
probability is not lost in the number of solutions of the smaller decoding problem. Still in the
regime of interest this number of solutions will be exponentially big but the collision decoders
which are used can in certain setting produce many solutions in constant amortized time. Of
course the specific value of the scaling constant ρ, λ such that ℓ = λn and p = ρn are then
determined by minimizing the time complexity of the algorithm which will be a function of
the rate of the code R and the relative error weight τ .

One must keep in mind that in all this thesis that whenever new parameters are introduced,
they scale linearly in the code length in our regime of interest.

Algorithm. This framework is written explicitly in Algorithm 2.
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Algorithm 2 Dumer ISD framework as in [Dum89]

Name: Dumer-ISD-Framework(C, y, t)
Parameter: Niter, ℓ
1: for i = 1 · · ·Niter do ▷ Niter will be exponential in t

2: I
$←{I ⊂ J1, nK : |I | = k + ℓ} ▷ Hope that the error verify the bet, for example say

that |eI | = p for a certain p
3: S ← Sub-Decoder(CI , yI ) ▷ Return a set of errors ẽI of low weight such that

yI − ẽI ∈ CI
4: for ẽI ∈ S do
5: c̃← Lift (C, I , yI + ẽI )
6: ẽ← y − c̃
7: if |ẽ| = t then
8: return ẽ

As a remark note that taking p = t, ℓ = n−k and Niter = 1 are valid choice of parameters
for Algorithm 2, thus this generic framework is necessarily at least as good as the Decoder
subroutine it uses.

In this setting, we clearly have the following giving the complexity of Algorithm 2.

Proposition 11. Let n ∈ N be growing to infinity. For any k, t, p, ℓ ∈ N functions of n
and any procedure Sub-Decoder which is such that

∀e′ ∈ Sn−s
p , P(D,z)∼DPH(k+ℓ,k,p)

(
e′ ∈ Sub-Decoder(D, z)

∣∣ z+ e′ ∈ D
)
= 1− o(1)

then there exists Niter an implicit function of n such that Algorithm 2 solves DPH (n, k, t)
with probability 1− o(1) in time and memory

Time = Õ
( (

n
t

)
(
n−k−ℓ
t−p

)(
k+ℓ
p

)TSub-Decoder

)
, Memory = Õ(MSub-Decoder)

where TSub-Decoder andMSub-Decoder are respectively the time and memory complexity of Sub-Decoder.

We present next two of those high rate efficient decoders [Dum89, BJMM12] which are
used inside this framework. To distinguish between the high rate efficient decoder from the
ISD’s that uses it we call the former the subroutine (i.e. [Dum89] subroutine and [BJMM12]
subroutine) and the latter without specification (or sometimes with an ISD in front). We will
see that each can naturally be used to produce essentially all the solutions to the decoding
problem.

2.1.2.1 Collision based decoders for the high rate regime

In this section we devise combinatoric decoders to decode a noisy codeword y = c + e
onto a linear code C. These decoders will in practice always be used as a subroutine inside
Algorithm 2.

Opposite to the Prange decoder where basically we enumerate tuples of positions that
we hope are error free, here we rather enumerate erroneous positions and the goal here is
to exhaust the whole search space of the error, namely Snt , without naively enumerating all
the

(
n
t

)
possibilities. These combinatoric decoders leverage the fact that if we know that a
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solution e to the decoding problem, namely such that y + e ∈ C, can be expressed as a sum
e = e(1)+e(2) of elements belonging to smaller sets e(1) ∈ S1 and e(2) ∈ S1 then it is sufficient

to compute S1 and S2 and merging them by computing S1 ▷◁(y)C S2 as defined next.

Definition 20 (Merging sets). Let y ∈ Fn
2 and let C be a linear code of length n. Let S1,S2

be two sets composed of vectors of Fn
2 . We define

S1 ▷◁(y)C S2 def
= {e : ∃

(
e(1), e(2)

)
∈ S1 × S1 : e = e(1) + e(2) and y + e ∈ C}.

In practice, this is done by taking H = H (C) a parity-check matrix of C, storing He(1)

for all e(1) ∈ S1 in a hash-table and checking for each e(2) ∈ S2 if H
(
e(2) + y

)
is in the

hash-table. Hence, the cost is, up to polynomial factors, the size of S1 and S2 and the size of

S1 ▷◁(y)C S2 (i.e. the number of found solutions to the decoding problem).

Lemma 4. Given S1,S2, C, y, the time complexity of computing S1 ▷◁(y)C S2 is

Õ
((
|S1|+ |S2|+

∣∣∣S1 ▷◁(y)C S2
∣∣∣
))

.

2.1.2.2 Dumer’s collision decoder a.k.a Dumer subroutine

The question really is now how to choose the subsets Si well enough to minimize their size
while maximizing the intersection of their sum with Snt . Because of the lack of additive
structure of the sphere it is handy, to minimize the search space, to consider two disjoint
subsets I1 and I2 and compute

S1 def
= {e ∈ Fn

2 : eI1 ∈ S
⌊n/2⌋
⌊t/2⌋ and eI2 = 0}.

S2 def
= {e ∈ Fn

2 : eI2 ∈ S
⌈n/2⌉
⌈t/2⌉ and eI1 = 0}.

This is a good choice as:

Lemma 5. There exists a poly-bounded function such that for any n, t ∈ N such that t ⩽ n
and any vector e ∈ Snt we have that

PI1 (e ∈ S1 + S2) ⩾
1

f(n)

Consequently it is readily seen that randomizing the choice of I1 and iterating a polynomial
number of times allows guaranteeing that we exhaust the whole search space with good
probability.
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Algorithm 3 Dumer first decoder [Dum86] (Or [Dum89] subroutine)

Name: Dumer-Subroutine(C, y, t)
Parameter: Niter, STOP ▷ Niter is a polynomial in n
1: ▷ Returns FAIL if the algorithm takes more than STOP step to finish. Used to upper

bound the complexity of the algorithm without damaging the probability of success
2: S ← ∅
3: for i = 1 · · ·Niter do

4: I1
$←{I ⊂ J1, nK : |I | = ⌊n/2⌋}

5: I2 ← J1, nK \I1

6: S1 ← {e ∈ Fn
2 : |eI1 | = ⌊t/2⌋ and eI2 = 0}

7: S2 ← {e ∈ Fn
2 : |eI2 | = ⌈t/2⌉ and eI1 = 0}

8: S ← S⋃
[
S2 ▷◁(y)C S1

]

9: return S

All in all, it is easy to show that in fact Dumer’s decoder returns all the solution to the
decoding problem with good probability.

Proposition 12. There exist Niter, STOP some implicit function of n such that for any k, t ∈
N implicit functions of n ∈ N, Algorithm 3, when given an instance (C, y) of DPH (n, k, t),
outputs with probability 1− o(1) the set C + y

⋂Snt in

Time = Õ
((√(

n

t

)
+

(
n
t

)

2n−k

))
, Memory = Õ

(√(
n

t

))
.

Proof. As the chosen subsets are independent in each iteration, is is easy to see that it is
sufficient that Niter is a big enough polynomial to ensure that with probability 1 − o(1), for
every e ∈ Snt there exists an iteration such that e can be expressed as a sum of an element of
S1 and S2. Concerning the time complexity of the algorithm it is readily seen that

|Si| ⩽
(⌈n/2⌉
⌈t/2⌉

)
= Õ

(√(
n

t

))
,

E
(
S2 ▷◁(y)C S1

)
⩽ E

(
C + y

⋂
Snt
)
⩽

(
n
t

)

2n−k
+ 1.

Consequently, the expected cost C of an iteration is

C = Õ
((√(

n

t

)
+

(
n
t

)

2n−k

))
.

Finally, choosing STOP to be nNiterC allows concluding, using Markov inequality, that with
probability 1− o(1) the algorithm will stop by itself before less than STOP operations.

Remark 4. Note that we made the previous proposition the most rigorous possible to give
the general idea of the proof strategy behind these propositions. But to keep our statement
and algorithm simple, from now on, we make the STOP parameter implicit, but keep in mind
that it will always secretly be there to upper bound the complexity of the algorithms without
damaging the probability of success.
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Remark 5. Importantly one can note that in fact this very simple decoder can, in the regime(
n
t

)
/2n−k >

√(
n
t

)
compute solutions in amortized time O(1). This means that the cost of the

algorithm is essentially the number of solutions.

Last, clearly, when decoding at Gilbert-Varshamov distance, in the regime where the rate
R = k/n the complexity of Dumer’s decoder is

Õ
(√

2n−k
)
,

this is the square root of the Prange decoder in the high rate regime.
Computing all the low-weight dual vectors with Dumer subroutine. Related to our
purpose, this routine can also trivially be used to compute all the low-weight dual codewords
of C: we only have to give as input the code C⊥ and the vector y = 0. We will, in particular,
give the asymptotic complexity exponent of the dual attack we devise in this thesis when this
subroutine is used to produce dual vectors. As such, for completeness we give its asymptotic
complexity exponent.

Proposition 13. Let R, τ ∈ N be implicit functions of n ∈ N and let k
def
= ⌊R n⌋ and t def

=
⌊τ n⌋. There exists an algorithm that when given an instance (C, y) of DPG (n, k, t), outputs
with probability 1−o(1) the set C⊥⋂Snt in time and memory respectively Õ

(
2αdual−Dumer−routine(R, τ)n

)

and Õ
(
2βdual−Dumer−routine(R, τ)n

)
where:

αdual−Dumer−routine (R, τ)
def
= max

(
h (τ)

2
, h (τ)−R

)

βdual−Dumer−routine (R, τ)
def
=
h (τ)

2
.

2.1.2.3 Using representation to decode, MMT11 and BJMM12

Dumer’s collision decoder was then improved by using a so called representation technique,
which was originally introduced and improved in [HJ10, BCJ11] to solve hard Knapsack
instances and which was then adapted to solve the decoding problem in [MMT11, BJMM12].
It allows gaining in some regime more than a square root over the naive enumeration and
provides an asymptotic improvement over Dumer’s decoder. We present here the general idea
behind the technique and then present [BJMM12].
General idea. They note that the error vector e ∈ Snt has an exponential number of low
weights representations, that is couple

(
e(1), e(2)

)
of vectors of low weights, say each vector

is in Snt′ where t′ ⩾ t/2, and which are such that e = e(1) + e(2). Their idea is, rather than
to search for the error vector directly, to search for one of its representations, the key gain
will come from the fact that they are able to decimate the space of representations efficiently,
namely construct two lists, L1 and L2, of vectors of Snt′ with the following properties.

1. (Decimation) Each list is of size essentially
(
n
t′

)
/Repr(n, t, t′) where Repr(n, t, t′) is

the number of representations of e as given in Lemma 6 and depends only on t = |e|,
n the ambient space dimension and t′ the weight of the representations. Roughly we
can think of this as an oblivious operation: for each vector e ∈ Snt the first list say
contains essentially only one e(1) such that there exists e(2) such that (e(1), e(2)) is a
representation of e.
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2. (Correctness) Crucially, when e is a solution to the decoding problem, the second list
contains the associated e(2).

Lemma 6. Given e ∈ Fn
2 we define the set of t′−representation of e as

Repr(e, t′) = {
(
e(1), e(2)

)
∈ Snt′ × Snt′ : e = e(1) + e(2)}.

For e ∈ Snt the number of t′−representations is given by

Repr(n, t, t′)
def
=

(
t

t/2

)(
n− t
t′ − t/2

)

when t is even, else it is 0.

The fact that we are able to verify both properties is what makes this technique viable. When
we want to solve a decoding problem this is possible by exploiting the linearity of the problem:
choosing some random linear code C′ of length n and with right dimension k′, say

n− k′ ≈ Repr(n, t, t′)

to get filter out the representations and compute

L1 = { e(1) ∈ Snt′ : e(1) ∈ C′}.

The correctness is obtained by noting that if C′ is in fact a supercode of C we have:

Fact 10. Suppose y = c+ e with c ∈ C and e = e(1) + e(2) and that C ⊂ C′

e(1) ∈ C′ ⇔ y + e(2) ∈ C′.

Thus, taking
L2 = { e(2) ∈ Snt′ : y + e(2) ∈ C′}

is the right corresponding choice. One can note that computing both lists is in fact solving
yet another decoding problem (or finding low weight codeword), but now we are decoding an
[n, k′]-linear code of higher dimension but at a smaller distance t′. At last, we can recover

the error e by computing L1 ▷◁(C)y L2 and then by filtering the resulting list to keep only the
solution of good weight t. In practice for the optimal parameters, this last filtering step will
in fact delete an exponential number of ill-weighted elements, this essentially comes from the
discussion below.

Because t′ < t this new decoding problem is easier than the original one in the sense that,

say using Dumer’s decoder we now have to construct lists of smaller size
√(

n
t′

)
instead of

the
√(

n
t

)
at first. The whole tradeoff comes from the fact that we want that t′ ⩾ t/2 is the

smallest possible so that this new decoding problem gets easier but the smallest t′ the biggest
the number of solutions of this new decoding problem gets, namely the size

(
n
t′

)
/Repr(n, t, t′)

of the lists L1,L2 increases, and can at some point dominate the cost.
In practice, to get in a zone where Dumer’s decoder is efficient, this is iterated a few times,

namely we use this procedure recursively to compute L1 and L2, and finally we use Dumer’s
decoder at the end.
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The algorithm. As we said, the strategy described above is applied recursively m times,
in the original proposal [BJMM12]. Say at level 0 you want to solve the original decoding
problem, i.e. compute

L0 = { e ∈ Snt : y + e ∈ C}, t0
def
= t.

This is done by choosing a super code C′ of C constructed by choosing the last r1 rows of the
parity-check matrix of C and searching for weight t1 representations of the error that are in
the sets

L1,1 = { e(1) ∈ Snt1 : y + e(1) ∈ C′},
L1,2 = { e(2) ∈ Snt1 : e(2) ∈ C′}.

Carefully choosing t1 and r1 together allows to ensure that one representation survives with
good probability, see Lemma 7. Now, computing the lists L1,1 and L1,2 is really just solving
another decoding problem and this is done by applying the procedure recursively. At level j,
to solve the decoding problem at distance tj and codimension rj we construct a new super
code by taking the last rj+1 rows of the parity-check matrix and look for tj+1 representations
of the solution (of the decoding problem considered at level j). At last, at the last level j = m
the problem is solved with the Dumer subroutine. In the original proposal of [BJMM12] the
algorithm presented was taken with 3 levels of recursions, namelym = 3. Using more levels do
not appear to make significant changes in the complexity. The 3-depth algorithm is written
in Algorithm 4. Note that we also included, as it was the case in the original article, the
fact that this whole procedure is iterated a polynomial number of times and randomized to
find at the end the solution with probability 1− o(1), this is possible of course provided that
the parameters verify the constraint of Lemma 7. This randomization is done by taking a
random shift r each time and search for representations that are such that y + e(1) + r ∈ C′
and e(2) + r ∈ C′.

Lemma 7. There exists a positive poly-bounded function f such that for any t, k, t1, r1 ∈ N
implicit functions of n such that

Repr(n, t, t1) ⩾ 2r1

then

P
(
∃
(
e(1), e(2)

)
∈ Repr(e, t1) : y + e(1) ∈ C′

∣∣∣ y + e ∈ C
)
⩾

1

f(n)

where C, y is an instance of DPH (n, k, t) and where C′ is the code whose parity-check matrix
is composed of the first r1 rows of the parity-check matrix H (C) of C and e is any fixed vector
of Snt .
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Algorithm 4 BJMM subroutine

Name: BJMM-Subroutine(C, y, t)
Parameter: r, t, Niter ▷ r, t are vectors containing the codimension of thesupercodes and

the weight of the representations at each level. We always have that t0 = t, the distance
of the original decoding problem

1: S ← ∅
2: while i = 1 · · ·Niter do
3: S ← S⋃BJMM-Rec(C, y, 0)
4: procedure BJMM-Rec(C, y, j) ▷ j is level of recursion
5: L ← ∅ ▷ Contains the found solutions e of weight t such that y + e ∈ C
6: r

$←Fn
2 ▷ Allows to randomize each iteration

7: C′ ← The code whose parity check-matrix is obtained by keeping only the last rj rows
of H (C)

8: if j < 2 then
9: L1 ← BJMM-Rec(C′, y + r, j + 1)

10: L2 ← BJMM-Rec(C′, r, j + 1)
11: else
12: L1 ← Dumer-Subroutine(C′, y, tj ;Niter = 1)
13: L2 ← Dumer-Subroutine(C′, 0, tj ;Niter = 1)

14: L′ ← L1 ▷◁(y)C′ L2
15: L ← L⋃{e ∈ L : |e| = tj} ▷ t0 ← t
16: return L

The performance of this subroutine is given by the following statement.

Corollary 3 (Corollary of [BJMM12, Theorem 1]. The complexity of the BJMM subroutine
Algorithm 4). Let n ∈ N be growing to infinity. For any k, t ∈ N and r ∈ N2, t ∈ N2 implicit
functions of n such that

Repr(n, t, t1) ∈ Θ̃ (2r1) and Repr(n, t1, t2) ∈ Θ̃ (2r2) (2.9)

There exists a poly-bounded function Niter such that Algorithm 4 solves DPH (n, k, t) with
probability 1− o(1) in

Time = Õ(max (T1, T2, T3)) , Memory = Õ(max (S1, S2, S3)) .

where

S1 =

(
n
t1

)

2r1
, S2 =

(
n
t2

)

2r2
, S3 =

√(
n

t2

)

and

T1 = max

(
S1,

S2
1

2(n−k)−r1

)
, T2 = max

(
S2,

S2
2

2r1−r2

)
, T3 = max

(
S3,

S2
3

2r2

)
.

Proof. This comes from [BJMM12, Theorem 1] by taking γ = O(log2 n) in the theorem.

Computing short dual vectors. Again, we will also analyze our dual attack when this
procedure is used to compute low weight dual vectors (by giving it as input C⊥ and 0). As
such, for completness, because the time complexity exponent of our dual attack will depend
on the time complexity exponent of this procedure we provide it next.
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Proposition 14. Asymptotic time complexity exponent of the BJMM subroutine to compute
a proportion 1 − o(1) of all the dual vectors of a certain weight. Let n ∈ N be growing to
infinity. For any R, τ, ρ1, ρ2, τ1, τ2 ∈]0, 1[ implicit function of n such that

ρ2 ⩽ ρ1 ⩽ (1−R), 2 τ2 ⩾ τ1, 2 τ1 ⩾ τ

and

ρ1 = νrepr (τ, τ1) and ρ2 = νrepr (τ1, τ2) (enough representations)

there exists an algorithm that is such that when given C ∼ UG (n, ⌊τn⌋) this algorithm outputs

with probability 1−o(1) a set S ⊂ C⊥⋂Sn⌊τn⌋ which is such that |S| /
∣∣∣C⊥

⋂Sn⌊τn⌋
∣∣∣ = 1−o(1) in

time and memory respectively Õ
(
2αdual-BJMM-routine(R,ω ;τ1,τ2,ρ1,ρ2)n

)
and Õ

(
2βdual-BJMM-routine(R,ω ;τ1,τ2,ρ1,ρ2)n

)

where

αdual-BJMM-routine(R,ω ; τ1, τ2, ρ1, ρ2)
def
= max(γ1, γ2, γ3),

βdual-BJMM-routine(R,ω ; τ1, τ2, ρ1, ρ2)
def
= max (µ1, µ2, µ3)

and where

µ1
def
= h(τ1)− ρ1, µ2

def
= h(τ2)− ρ2, µ3

def
= h(τ2)/2 (list sizes)

and

γ1
def
= max (µ1, 2 µ1 − (1−R− ρ1)) , γ2

def
= max (µ2, 2 µ2 − (ρ1 − ρ2)) , γ3

def
= max (µ3, 2 µ3 − ρ2) .

Definition 21. Given R, τ we denote more simply

αdual-BJMM-routine(R,ω )
def
= αdual-BJMM-routine(R,ω ;π∗1, π

∗
2, λ

∗
1, λ

∗
2)

βdual-BJMM-routine(R,ω )
def
= βdual-BJMM-routine(R,ω ;π∗1, π

∗
2, λ

∗
1, λ

∗
2)

and where the parameters (π∗1, π
∗
2, λ

∗
1, λ

∗
2) minimize the time complexity exponent,

αdual-BJMM-routine(R,ω ; τ∗1 , τ
∗
2 , ρ

∗
1, ρ

∗
2) under the previous constraints.

2.1.3 Reducing decoding to a noisy syndrome decoding problem

In this section we give the ideas behind some of the most recent solvers [MO15, BM17, BM18,
Ess23]. The idea of these algorithms is simply to notice that, starting again from Prange,
when we select a set I of k positions we can relax the bet by allowing that eI contains a
few erroneous positions and try to recover eI by making the following observation.

Fact 11. Let C be an [n, k]-linear code. Let y ∈ Fn
2 be a vector and let I ⊂ J1, nK be a

information set of C of size k. Let

R
def
= Lift (C, I ) , s′

def
= yI +Ry⊺

I .

Let e ∈ Fn
2 be a vector, we have that

y + e ∈ C ⇔
∣∣Re⊺I − s′

∣∣ = t− |eI | . (2.10)
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Proof. Suppose y + e ∈ C. Thus y = c + e for some c ∈ C. By definition of the lift R we
have that

Re⊺I = Rc⊺I +Ry⊺
I = cI +Ry⊺

I = yI + eI +Ry⊺
I = s′ + eI .

The converse is the same.

So really, here provided that |eI | is of betted weight, say w, then we recovering eI is
really just finding a weight w vector z which is such that

|Rz⊺ + s| = t− w.
We call this problem the noisy syndrome decoding problem and define its average variant as
follows.

Definition 22 (Noisy syndrome decoding NSDPR (r, k, w, p)). Let r, k, t, w the average noisy

syndrome decoding problem NSDPR (r, k, t, w) is defined as follow: given R ∼ U
(
Fr×k
2

)
and

s = Rz⊺ + e′ where z ∼ U
(
Skw
)
and e′ ∼ U

(
Srp
)
, the goal is to output an z ∈ Skw such that

|Rz⊺ + s| = p.

This problem is clearly hard and can be seen as some kind of generalization of the decoding
problem. One important note is that what makes this approach viable is that there exists
some solver for this problem which vastly outperforms the naive search. Of course this lead
to a new tradeoff as this new problem gets harder and harder as w increases while the bet
that |eI | gets verified becomes likelier. As always with these algorithms in the regime that
are of interest to us (namely the rate is constant and the error weight |e| = t is linear in the
codelength n), the bet on |eI | will essentially be linear in the error weight |e| = t so that it
can really have an exponential impact on the algorithm.

Note that, from a high level point of view this is somewhat profitable compared to the
Dumer ISD framework as we reduced the number of selected positions this allows to reduce
the cost of the bet and to have a smaller search space for the error. On the contrary it is not
straightforward to compare apriori the hardness of this new problem to the hardness of the
higher rate decoding problem appearing in the Dumer ISD framework.

The algorithm is presented in Algorithm 5 and relies on a certain procedure solving the
noisy syndrome decoding problem.

Algorithm 5 Reducing decoding to noisy-syndrome decoding [MO15]

Name: ReducingDecodingToNoisySyndrome(C, y, t)
1: for i = 1 · · ·Niter do ▷ Niter will be exponential so that a bet on the error weight distribu-

tion is valid
2: I ← {I ⊂ J1, nK : |I | = k}
3: R← Lift (C, I )
4: s← RyI + yI ▷ The noisy syndrome
5: S ′ ← NoisySyndrome-Decoder(R, s, w, t− w) ▷ Return some eI such that

|ReI + s′| = t− |eI |
6: S ← { e ∈ Snt : eI ∈ S ′ and eI = ReI } ▷ Each eI is lifted to a solution to the orig-

inal decoding problem y + e ∈ C
7: return S

The complexity of the algorithm is given as follows.
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Proposition 15. Let n ∈ N be growing to infinity. Let k,w, p be functions of n. There exists
Niter a function of n such that provided that the procedure NoisySyndrome-Decoder() is
such that it solves an instance of NSDPR (n− k, k, w, t− w) with probability 1 − o(1) then
Algorithm 5 solves DPH (n, k, t) with probability 1− o(1) in

Time = Õ
( (

n
t

)
(
n−k
t−w

)(
k
w

)TNSD

)
, Memory = Õ(MNSD)

where TNSD andMNSD are respectively the time and memory complexity of NoisySyndrome-Decoder().

Last, note that there are in fact two variants of the previously introduced algorithm which
are presented in [MO15], the other one is a mixed approach between the ISD Dumer framework
and this approach which we do not present here as, as of today the most efficient approach
comes from [BM18] which is in this framework.

2.1.3.1 Near-collisions techniques

Here we want to solve the NSDPR (r, k, w, p) problem, namely we are given a matrixR ∈ Fr×k
2

and a noisy syndrome s ∈ Fr×1
2 and the goal is to recover a solution z ∈ Skw such that

|Rz+ s| = p. In some of the algorithm we present here we will sometime need to compute
essentially all the solutions to this problem, in that case we can show easily that, without
counting the planted solution, the expected number of solutions is of the order

(
k

w

) (n
p

)

2n−k
.

Of course the goal here is to do better than enumerating naively Skw. The idea here is,
similar to the Dumer collision decoder to somehow diminish the search space. Namely, to
compute two smaller subsets S1 and S2 which are such that we can guarantee that the solution
z to the noisy syndrome problem can be decomposed as

z = z1 + z2, where z1 ∈ S1 and z2 ∈ S2.

But contrary to the Dumer collision decoder, from there, recovering z reduces to solving a
near-collision problem at distance p. Namely, as described in Algorithm 6, we just have to
compute

L1 = { Rz1
⊺ : z1 ∈ S1}

L2 = { Rz1
⊺ + s : z2 ∈ S2}

and then find near-collisions, that is couple (a, b) ∈ L1 ×L2 that are such that there sum is
of low weight:

|a+ b| = p.
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Algorithm 6

Name: Near-Collide(S1, S2, R, s, p) ▷ Returns some elements z such that z = z1 + z2
where z1, z2 ∈ S1 × S2 and |Rz1

⊺ + z2
⊺ + s| = p

1: L1 ← { Rz1
⊺ : z1 ∈ S1}

2: L2 ← { Rz2
⊺ + s : z2 ∈ S2}

3: L ← Near-Collision(L1, L2, p) ▷ Return a subset of {(a, b) ∈ L1×L2 : |a+ b| = p}
4: S ← { z1 + z2 : (z1, z2) ∈ S1 × S2 and (Rz1

⊺, Rz2
⊺ + s) ∈ L} ▷ is done in time

Õ(|L|) with a hash table
5: return S

2.1.3.1.1 Complexity of near-collisions techniques As explained before, because all
the parameters grows linearly in the codelength in our regime of interest, these list will be
of exponential size thus it is important to devise better algorithm than the naive quadratic
Õ(|L1| |L2|) near collision algorithm. Say here, as it will be the case in practice that they are,
up to polynimal factors of equal size. [MO15] devised a Locallity-Sensitive-Hashing based
procedure to find near-collision which was tailored for these regimes, later [Car20] noticed
that the result from [MO15] could be generalized by using some older Locality-Sensitive-
based techniques which where never analyzed in this setting. Then [EKZ21] extended [MO15]
work and obtained essentially (up to different superpolynomial but subexponential factors)
the same results as [Car20]. We state the result here which we will use for now one as the
complexity of the Near-Collision procedure and give just after an overview, in Section
2.1.3.1.2 of the algorithm underlying the following theorem.

Theorem 1 (Crollary of [Car20, Theorem 9.1.5] or [EKZ21, Theorem 1, p. 8] and the
discussion around.). Let n be growing to infinity and let τ ∈]0, 1/2[ and λ ∈]0, 1[ be constants.
There exists an algorithm which is such that when given two random lists L1, L2 which are
such that |L1| ∈ Õ

(
2λn
)
, |L2| ∈ Õ

(
2λn
)
and which are composed of random vectors of Fn

2

whose distribution satisfies the following properties:

• For each index i, the i’th element of each list is uniformly distributed in Fn
2 .

• There exists at most a number Õ(1) of couples of index (i∗, j∗) such that the i∗’th
element of L1 and the j∗’the element of L2 are dependent.

then this algorithm outputs a set S ⊂ { (x, y) ∈ L1 × L2 : |x+ x| = ⌊τn⌋} which is such
that any element of { (x, y) ∈ L1 × L2 : |x+ x| = ⌊τn⌋} is in S with probability 1 − o(1).
This is done in time and memory upper bounded by

(
2λn
)αNNS(λ,ω)(1+o(1))

where

αNNS (λ, ω)
def
=

{
(1− τ)

(
1− h

(
τ∗−τ/2
1−τ

))
if τ ⩽ 2 τ∗ (1− τ∗)

2λ+ h (τ)− 1 otherwise
(2.11)

and τ∗
def
= h−1 (1− λ).

52
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Remark 6. Note that in both [Car20] and [MO15, EKZ21] there is a hidden superpolynomial
factor coming from the 2o(1)n term in the complexity 2αNNS(λ,ω)(1+o(1))n. In [Car20] this o(1)

term is in Θ
(√

n log (n)
)
but he also gives a way to make it polynomial without a proof but

with experimental evidences [Car20, Figure 9.3] supporting his claim.

Other near-collision techniques. There exists some other techniques that can be used
and which are not based on this Locality-Sensitive-Hashing framework but rather on some
fast matrix multiplication techniques [Val15, KKK18, KKKOC16, Alm19, AZ23] and which
can, in certain regime strictly beat these Locality-Sensitive-Hashing based techniques. But
the typical setting in which these last algorithms are tailored is to find a unique planted
pair of close vector in two lists in a regime where we do not expect any other non-planted
solutions. More precisely the complexity statement of [KKK18, Alm19] is stated as follows:
for a given constant ρ > 0 there exists a λ > 0 such that as long as |L1| = O

(
2λn
)
then

finding a planted pair of vector at distance ρn can be done in time O
(
|L1|1.582

)
. This means

that this theorem still applies when the list are of exponential size (but not too big) and the
distance is linear in n. The latest work by [AZ23] proposed for the first time a mix between
the LSH approach and this matrix multiplication framework (this approach is not better than
the LSH framework in all the regimes though) and we don’t know what this last approach
would yield in performance in our setting.

2.1.3.1.2 Using codes to find near-collisions We give here some detail and history
about the algorithm underlying Theorem 1. The algorithm which are traditionally used to
solve this near-collision problem or other related problems are Locality-Sensitive-Hashing
(LSH) based [DHL+94, BE98, IM98, GMO10, Dub10, MO15, Car20, EKZ21].In a nutshell a
LSH here is a somewhat balanced many-to-one function which verifies the key property that it
maps two random elements of the space, say Fn

2 , to the same value with increasing probability
as these two elements gets closer. Having access to such an LSH function gives an advantage
to find near-collision: by hashing each element of each list we can naively compare only those
elements of the lists whose hash is the same as this allows to compare only those pairs which
already have an increased probability of being close. In practice, we really need a family
of LSH so this can be randomized and done sufficiently many times so that the advantage
becomes non negligible. One can see that there is a competition between the output size of
the LSH that we would like to be as big as possible to diminish the number of comparison
and the locality property we require on it, which naturally requires that this output is not
too big. Solving this near-collision problem using this framework was initiated by [DHL+94]
and it was proposed there to use codes to build LSH: from a code C ⊂ Fn

2 locally hashing an
element of Fn

2 can be done by decoding it to a close codeword. We give a description of this
framework in Algorithm 7.
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Algorithm 7 LSH Framework

Name: Near-Collision(L1, L2)
Input: L1, L2
Parameter: n, w, F ▷ The ambient space is Fn

2 , we are looking for vectors at distance w
using a family F of code of length n

1: for i = 1 · · ·Niter do ▷ Can be polynomial or exponential depending on the list size, the
length of the vector and the target weight.

2: C $←F
3: H ← ∅ ▷ Hash table
4: S ← ∅ ▷ Set containing the near collisions
5: for x ∈ L1 do
6: c← Decode(C,x) ▷ We must have access for each code C in the family F to a

procedure Decode(C,x) which outputs efficiently a codeword of C close to x, the
closer the better

7: H [c] .append(x) ▷ Add x in the entry c of the hash-table
8: for y ∈ L2 do
9: c← Decode(C,y)

10: for x ∈ H [c] do
11: If |x+ y| = w then S ← S⋃{(x,y)}
12: return S

When the vectors of the lists are distributed uniformly at random in the ambiant
space Fn

2 . When the vectors in each list L1 and L2 are distributed uniformly at random in Fn
2

one can convince himself that taking codes with good covering capability and decoding at the
nearest codeword seems like a good choice to ensure that the space Fn

2 is split in roughly equal
sized buckets while maximizing the probability that two close vectors are decoded onto the
same codeword. Clearly, each phenomenon compete depending on the number of codewords,
say 2k, in the code C.

This motivates the choice for analyzing this LSH framework with random codes (say F is
the family of all [n, k]-linear code for example, but the linearity does not change anything to
the analysis) and neglect the cost of decoding to obtain an idea of what is achievable. A first
analysis was done in [GMO10] but in a setting that is inapplicable here and then [Car20] made
the first analysis in the setting we are interested in and this ultimately lead to Theorem 1,
note that the analysis is technical Niter and k can be optimized analytically.

Note this is not completely sufficient to state Theorem 1 because we still need a family of
code which would be as good as random code but which we know how to decode. To this end
[Car20] proposed to use, inspired by [BDGL16], a cartesian product C = C1×C2×· · ·×Cb of b =
O
(√

n/log(n)
)
small random linear codes where each Ci is of length O

(√
n log(n)

)
. In this

case, decoding a word can be done sub exponential but super polynomial time 2
O
(√

n log(n)
)
=

2o(n) by essentially enumerating the codewords of each code, in an independent manner. Last
it is also shown there that the use of a product of small random code instead of a random
code incurs a loss of order 2o(n) in the probability that two close elements decode onto the
same codeword (this translates into an additional factor 2o(n) in the number of iterations
Niter we have to make). Both phenomena are the reason behind the super polynomial term
in Theorem 1.
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Lastly, [Car20] proposed to use Polar codes [Arı09] and their list decoder [TV15] instead
of product of small codes. It was conjectured that this allowed to yield only a polynomial
overhead, this was supported with some experimental evidences [Car20, Figure 9.3]. The
rough intuition behind this choice and behind this conjecture is that Polar codes and their
decoder are good for compression, namely they achieve the Shannon rate-distortion bounds
over a Binary Symmetric Channel.

2.1.3.2 A simple near-collision based noisy syndrome solver

For example, a simple algorithm Algorithm 8 using this Near-Collision routine was devised
in [MO15] and consists essentially in splitting the support in two equal part an enumerating
weight w/2 vectors on each part in a Dumer like fashion.

Algorithm 8 Simplest variant of [MO15] to solve the noisy syndrome problem

Name: NSD-MO15(R, s, w, p)

1: I1
$←{I ⊂ J1, nK : |I | = ⌊n/2⌋}

2: I2 ← J1, nK \I1

3: S1 ← {e ∈ Fn
2 : |eI1 | = ⌊w/2⌋ and eI2 = 0}

4: S2 ← {e ∈ Fn
2 : |eI2 | = ⌈w/2⌉ and eI1 = 0}

5: L ← NNS(S1, S2, R, s, p)
6: return L

2.1.3.3 State of the art: representations and the BM18 algorithm

This last algorithm to solve the noisy syndrome decoding problem was then improved in
[BM18] by adapting the representation technique (see Section 2.1.2.3) to this particular set-
ting. To this date, this algorithm, when used inside the ”Reducing decoding to the noisy
syndrome decoding” framework given in Algorithm 5 is the best algorithm to decode ran-
dom linear codes of constant rates at Gilbert-Varshamov distance. This algorithm, similar
to [BJMM12] is a multi-depth algorithm. We start by presenting the depth-2 variant to give
the idea and then give the depth-4 variant that is currently used to set the baseline of the
complexity of the best decoders (the authors of [BM18, Page 21] note that they were unable
to improve the complexity due to the space of parameters that started to get too large for
their optimizer).

Finally, we show that there was an error in the original analysis of this algorithm which
lead to a significative underestimation of the complexity of the algorithm. We correct the
analysis and give new complexity estimates.

2.1.3.3.1 The algorithm General idea. Here again, instead of searching for the error
vector z ∈ Skw which is solution to our noisy syndrome decoding problem

|Rz+ s| = p.

we search for say a weight t1 representant (z1, z2) of z, namely

z = z1 + z2, where |z1| = |z2| = t1.
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The goal here is, as before, to compute two lists of L1, L2 such that if z is a solution to our
noisy syndrome then there exists a representation (z1, z2) of z which belongs to L1×L2. This
solution can then be recovered with a Near-Collision search. Here, the key equality coming
into play to ensure that we can control the decimation, namely ensuing that we can filter out
z1 and z2 somewhat independently is the fact that we have that

|Rz2 +Rz1 + s| = p.

Say for example and to simplify that we consider the unique weight p1 which is such that the
sum of two uniformly random vectors of weight p and p1 respectively is of typical weight p1,
then we can ensure that if |Rz1| = p1 then with probability Ω̃ (1) we have that |Rz2 + s| = p1.
Of course, to ensure that there can actually exist such a representant (here the condition
is way too strong), we filter out the representants which verify a similar condition but on
a restricted subset of the rows of R, and choose the number of rows such that only one
representant survives the condition. One can really see that finding the representant verifying
this condition is really just solving yet another easier related noisy syndrome decoding problem
and that this technique can be applied recursively. We add also that in general the typical
weight condition on p1 is relaxed to reduce to an easier sub-problem but at the cost of losing
the one to one correspondence z1 ∈ L1 ⇔ z2 ∈ L2.
Describing more precisely the depth 2 algorithm. Let us be more precise, denoting by
R(1) ∈ Fr1×k

2 and s(1) ∈ Fr1×1
2 the last r1 rows of R and s respectively, say

R =

(
R(0)

R(1)

)
, s =

(
s(0)

s(1)

)
, R(1) ∈ Fr1×k

2 , s(1) ∈ Fr1×1
2 .

and denote by p(0) and p(1) the weight on each part, namely

∣∣∣R(0)z+ s(0)
∣∣∣ = p(0),

∣∣∣R(1)z+ s(1)
∣∣∣ = p(1)

with

p(0) + p(1) = p.

The algorithm searchs for weight w1 representations of z which are of weight p1 on the first
part, namely the algorithm computes

L1 = { z1 ∈ Skw1
:
∣∣∣R(1)z1

⊺
∣∣∣ = p1},

L2 = { z2 ∈ Skw1
:
∣∣∣R(1)z2

⊺ + s(1)
∣∣∣ = p1}.

In this depth-2 variant these lists are computed with the previously introduced near-collision
decoder Algorithm 8. Provided that all the quantities are well-chosen, namely in our case
here that

Repr(k,w, w1) ⩾
2r1

Repr(r1, p(1), p1)
.

we can ensure that with good probability [BM18, Lemma 1], there exists some representations
(z1z2) of z which are in L1 × L2.
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Then the algorithm recovers z by finding the pairs (z1, z2) ∈ L1×L2 which yield a solution
to the noisy syndrome decoding problem, that is such that |z1 + z2| = w and |Rz1 +Rz2 + s| =
p. This is done in two steps. Fist by doing an near-collision search on the first part of the
support to find the couples that are such that

∣∣R(0)z1 +R(0)z2 + s(0)
∣∣ = p(0), that is we

compute
NNS(L1, L2, R(0), s(0)).

Second, it naively filters the resulting list to keep only the resulting couples (z1, z2) which
are such that z1 + z2 = w and such that

∣∣R(1)z1 +R(1)z2 + s(2)
∣∣ = p(1). Notably, this last

filtering step can filter out an exponential number of candidates depending on the parameters.
Importantly, see that, apriori we might have to make a bet that p(1) and p(2) are not the

typical weight in order to balance the costs of the different step of the algorithm. So really
the algorithm bets that the weight of |Rz+ s| = p decomposes well and iterates until this
bet is valid, each iteration is randomized by permuting the rows of H and s.
The depth 4 algorithm. The full scale algorithm is in fact a depth m procedure where the
above design rational is applied somewhat (but not completely) recursively: the algorithm
keeps a very fine control on the shape of the representations. We present the depth 4-variant
which was used in the original article to make the complexity claims.

Recall that we are looking for a solution z of the noisy syndrome decoding problem

|Rz⊺ + s| = p, where |z| = w, R ∈ Fr×k
2 .

The algorithm starts by making a bet on the weight of the syndrome on each subpart, namely

we carefully choose some parameters ri and P
(i)
0 and bet that

∀i ∈ J0, 3K
∣∣∣R(i)z⊺ + s(i)

∣∣∣ = P
(i)
0

where

3∑

i=1

P
(i)
0 = p,

3∑

i=0

ri = r, R =



R(0)

...

R(3)


 , s =



s(0)

...

s(3)


 , ∀i ∈ J1, 3K R(i) ∈ Fri×k

2 , s(i) ∈ Fri×1
2 .

(2.12)

The overall goal is to compute the list

L0 = { z ∈ Skw : ∀i ∈ J0, 3K
∣∣∣R(i)z⊺ + s(i)

∣∣∣ = P
(i)
0 }

where, provided the bet is valid, our solution lies. Computing this list is done by searching
for weight w1 representations (z1, z2) of z that are in

L1,1 = { z1 ∈ Skw1
: ∀i ∈ J1, 3K

∣∣∣R(i)z1
⊺
∣∣∣ = P

(i)
1 }

L1,2 = { z2 ∈ Skw1
: ∀i ∈ J1, 3K

∣∣∣R(i)z2
⊺ + s(i)

∣∣∣ = P
(i)
1 }

where w1 and the P
(i)
1 ’s are carefully chosen parameters to ensure that essentially one rep-

resentation (z1, z2) belongs to L1,1 × L1,2. [BM18, Lemma 2] shows in that regard that is
sufficient to take these parameters such that

Repr(k,w,w1) ⩾
3∏

h=1

2rh

Repr(rh, P
(h)
0 , P

(h)
1 )

(2.13)
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to ensure that the aforementioned condition is met with sufficiently good probability. Now,
each of these lists L1,1, L1,2 are computed similarly up until the last level which is solved
with the near-collision solver Algorithm 8. All in all it is readily seen, using again [BM18,
Lemma 2] that it is sufficient to have, along with Eq. (2.13), that

∀i ∈ J1, 2K Repr(k,wi, wi+1) ⩾
3∏

h=i+1

2rh

Repr(rh, P
(h)
i , P

(h)
i+1)

(2.14)

to ensure that at the end the solution to the original noisy syndrome decoding problem is in
the final list with good probability. We give the algorithm in Algorithm 9.

Algorithm 9 [BM18] subroutine

Name: NSD-BM18(R, s, w, p)
Parameter: r, w, P
Parameter: Niter ▷ We always define w0 (the first coordinate of w) as equal to w the weight

of the solution.
1: while i = 1 · · ·Niter do ▷ Iterate an exponential number of times until the bet is valid
2: R, s← Randomly permute the rows of R use the same permutation to permute the

rows of s
3: Compute R(i), s(i) for all i ∈ J1, 4K as in Eq. (2.12). ▷We have that R(i) ∈ Fri×k

2 and
s(i) ∈ Fri×1

2

4: L3,1 ←MO15-NS(R(3), s(3) ; w3, P
(3)
3 )

5: L3,2 ←MO15-NS(R(3), 0r3 ; w3, P
(3)
3 )

6: while j = 2, 1, 0 do

7: L′j,1 ← NNS(Lj+1,1, Lj+1,1, R
(j), 0rj , P

(j)
j )

8: Lj,1 ← {z ∈ L′j,1 : |z| = wj and ∀i ∈ Jj, 3K
∣∣R(i)z⊺

∣∣ = P
(i)
j } ▷ Filtering to keep

the good weights

9: L′j,2 ← NNS(Lj+1,1, Lj+1,2, R
(j), s(j), P

(j)
j )

10: Lj,2 ← {z ∈ L′j,2 : |z| = wj and ∀i ∈ Jj, 3K
∣∣R(i)zv⊺ + s(i)

∣∣ = P
(i)
j }

11: return L0,2

2.1.3.4 Contribution: new complexity estimates for the state of the art

We found an error in the original analysis of the algorithm which lead to a big underestimation
of the original complexity of the algorithm. The complexity of this algorithm crucially depends
on the size of the lists Lj,1, Lj,2 in Algorithm 9. At some point, the authors claim that for
j ∈ J0, 1K we have that

([BM18, Page 16]) E (|Li,1|) ⩽
(
k

wi

)

P
a∼U

(
F
(rj)

2

) (|a| = P
(j)
j

) 3∏

h=j+1

P
a, b∼U

(
F(rh)
2

) (|a+ b| = P
(h)
j

∣∣∣ |a| = |b| = P
(h)
j+1

)
(2.15)

Those last probabilities represent the probability that a couple of Li+1,1×Li+1,1 produces an

element fit to be in Li,1. But clearly, the term in
(
k
wi

)
is not the right term that should be in

front of those probabilities.
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2. State of the art of generic decoders

In fact the estimates given by Eq. (2.15) are largely too optimistic. For example, taking
the original optimal parameters devised in [BM18] and re-computing the complexity of the
algorithm with the news corrected list size estimates that we give next yields much worse
complexity exponents. A small fix. We fix the analysis by noting that, by construction, for
j ∈ J0, 3K we have

Lj,1 ⊂ {z ∈ Skwj
: ∀i ∈ Jj, 3K

∣∣∣R(i)z⊺
∣∣∣ = P

(i)
j }.

Thus, counting the potential planted solution we have that:

E (|Lj,1|) ⩽

∏3
i=j

( ri

P
(i)
j

)

2
∑3

i=j ri
+ 1. (2.16)

In fact this bound is tight up to polynomial factors as long as the parameter verify the
constraint that we have enough representations Eq. (2.13) and Eq. (2.14). The same holds
for the other list |Lj,2|.
Contribution : new complexity estimates for [BM18]. Let us now come back to
the decoding problem DPH (n, k, t) and analyze the full [BM18] algorithm: that is when we
use this last subroutine Algorithm 9 onto the noisy-syndrome framework Algorithm 5. The
analysis of [BM18] relies on 3 ingredients.

• 1) Choosing the right number of iterations (in Algorithm 5 and Algorithm 9) such that
the bet of the weight of the error on each subpart is valid.

• 2) Choosing the parameters correctly to ensure that a solution have a representation in
each level, this is already given by Eq. (2.13) and Eq. (2.14).

• 3) Estimating the size of the lists. This is given by Eq. (2.16)

Concerning the first point, it is readily seen that in the main framework Algorithm 5 we want
that there exists an iteration which is such that |eI | = w. Now, to solve the noisy syndrome
decoding problem given by

∣∣Re⊺I + s
∣∣ = t − w where we recall that R = Lift (C, I ) and

s = yI + Ry⊺
I as defined in Fact 11, Algorithm 9 iterates so that the there exists an

iteration such that for all i ∈ J0, 3K we have that
∣∣R(i)e⊺I + s(i)

∣∣ = P
(i)
0 . Clearly we need a

total of

Õ




(
n
t

)
(
k
w

)∏3
i=0

( ri

P
(i)
0

)




iterations to ensure that all these conditions are valid at least once.
All in all we can give the final theorem giving the performance of [BM18]. The following

theorem is only a slightly rewritten variant of the discussion of [BM18, §4] but where we
replaced the expected size of the list by our corrected value. Note that we also used the
near-collision search procedure of Theorem 1. It is more general than near-collision technique
from [MO15] that is used in [BM18]. The complexity results we gave in Fig. 2.1 concerning
[BM18] were obtained by minimizing αBM18 under the constraints given in the theorem. We
show in particular that the complexity of the algorithm was largely underestimated. However,
Fig. 2.1 shows that this algorithm is still the state of the art, its time complexity exponent
slightly beats the previous best ISD [BM17]. Those results were latter confirmed by Esser
[Ess23]. Notably, he noticed furthermore that in fact [BM18] with the corrected analysis had
a significantly better memory complexity (we did not look at the memory complexity in our
original in our work published in [CDMT22]) than say the previous best decoders [BM17].
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2.1. Information Set Decoders

Theorem 2 (Corrected complexity exponent of [BM18]). Let n ∈ N be growing to in-
finity and let R, τ ∈]0, 1[ be positive constants. If there exists some positive constants

ρ, ω0, ω1, ω2, ω3, π, π
(3)
3 , π

(2)
2 , π

(3)
2 , π

(1)
1 , . . . , π

(3)
1 , π

(0)
0 , · · · , π(3)0 ∈]0, 1[ such that

ρ = 1−R, π = τ − ω, ω0 = ω, 0 < ω < min (τ, R/2) ,
3∑

i=0

π
(i)
0 = π,

3∑

i=0

ρi = ρ

∀i ∈ J0, 2K2 ωi+1 ⩾ ωi, ∀j ∈ J0, 3K ∀i ∈ Jj, 3K2 π(j)i+1 ⩾ π
(j)
i

and such that

∀i ∈ J0, 2K, R νRepr (ωi/R, ωi+1/R) =
3∑

h=i+1

ρh − ρhνRepr

(
π
(h)
i /ρh, π

(h)
i+1/ρh

)
(Enough Representations)

(2.17)

where the asymptotic number of representations νrepr is defined as

νrepr
(
η, η′

) def
= η + (1− η)h

((
η′ − η/2

)
/(1− η)

)

then, there exists an algorithm that solves DPH (n, ⌊Rn⌋ , ⌊τn⌋) with probability 1 − o(1) in
time 2αBM18(1+o(1))n and memory 2βBM18(1+o(1))n where

αBM18
def
= γBet +max (γ0, γ1, γ2, γ3)

βBM18
def
= max (λ1, λ2, λ3, λ4)

and where

γi = λi+1 ρi αNNS

(
λi+1/ρi, π

(i)
i /ρi

)
, for i = 0 · · · 3 (Cost of NNS)

λ4
def
=
R

2
h (ω3/R) , (list size)

λi
def
= R h (ωi/R)−

3∑

h=i

ρh, for i = 1 · · · 3, (List size)

γBet
def
= h (τ)−

[
Rh (ω/R) +

3∑

i=0

ρih
(
π
(i)
i /ρi

)]
, (number of iteration)

2.1.3.5 Further work

It was also proposed in [Ess23] a generalization of [BM18] by replacing the naive filtering
steps that is done at each level (see Line 8 of Algorithm 9) and make it at the same time
as the Near-Collision step, all at once. The difference is that now the parts of the syndrome
appearing in the near-collision search are not uniformly distributed but rather are uniform on
some subpart and lie on spheres on some other subparts. It was proposed there a technical
way to achieve this but in the regime studied in the paper (decoding codes of constant rates
at the Gilbert-Varshamov distance), this however did not yield any improvement on the time
complexity over the original [BM18] algorithm. In fact Kévin Carrier, Jean-Pierre Tillich and
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2. State of the art of generic decoders

I tried independently of [Ess23] to achieve the same goal (embedding the naive filtering onto
the NNS step) but tried it differently. Basically we started back with the LSH framework
and built a locality-sensitive-hashing function which was tailored to this setting. Basically
we concatenated some smaller LSH (one on each subpart) where each was tailored for the
specific distribution of the corresponding subpart. For the subpart where the syndromes
where distributed spherically we reused the LSH built in [Car20, §8.2.3] which essentially
hash by decoding on some non-linear spherical code. Still, it seems that this does not give a
better asymptotic time complexity exponent either.

More recently [FA25] noticed that [BM18] could be improved by reusing many times the
lower level lists: conditioned on the fact that the bet on the first part of the syndrome
R(1)z+ s(1) one compute once the lists of the first level L1,1 and L1,2 and use them multiple
time by randomizing the order of the rest of the rows at each iteration. This however, did
not yield better time complexity exponent either but it improved time-memory tradoffs.

2.2 Dual attacks in coding theory: statistical decoding

Idea of dual decoders Say we are given a noisy codeword y = c + e where e is an error
vector of known small weight t. Dual decoders, to recover the error vector e, use the fact that
for any dual vector h ∈ C⊥ we know ⟨e,h⟩ as we have that

⟨y,h⟩ = ⟨e,h⟩ . (2.18)

Of course, recovering the error directly by linear algebra is not possible directly here as
dim

(
C⊥
)
= n − k < n. The important point is to notice that if h is sparse, then ⟨e,h⟩ is

biased toward 0 as it is the inner product of two sparse vectors. The key observation being
that it is essentially more biased toward 0 as the weight of e and h decreases. This can then
be leveraged to decode.

The origin: Gallager LDPC decoder. Leveraging such ideas can be traced back, not for
attacks, but in the search of a family of efficiently decodable codes by Gallager in 1963 [Gal63].
His idea was to construct a code containing extremely sparse, of Hamming weight O(1) dual
vectors, namely a Low-Density Parity-Check (LDPC) which he would decode iteratively by
flipping those positions which appear in sufficiently many unsatisfied low-weight parity-check
equations. Forgetting about the iterative part of his algorithm one could restate his idea as
follows. To recover say the first position of the error, e1, it leverages the fact that a sparse
dual vector h which is such that h1 = 1 gives rise to a noisy version of e1, namely

⟨y,h⟩ = e1 +
〈
e\1,h\1

〉
(2.19)

where it is readily seen that the noise,
〈
e\1,h\1

〉
is biased toward 0 as e and h are sparse.

It then recovers e1 by majority voting by taking all the h’s of weight O(1), and essentially
choosing for e1 whichever value of ⟨y,h⟩ appears the most. Note that one could think intu-
itively that the aforementioned lack of dimensionality somewhat does not a apply here as we
are only trying to recover 1 position at a time.

2.2.1 The first dual attack: Statistical Decoding.

Later, in 2001 Al-Jabri [Jab01], used exactly this idea but to make an algorithm to decode
generically linear codes, he called it statistical decoding. The difference here being that the
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2.2. Dual attacks in coding theory: statistical decoding

dual vectors of low weight must be computed and that they are a priori not as sparse as
before, namely for a random code of constant rate we expect that even the shortest dual
vector is of weight Ω (n). This automatically makes

〈
e\1,h\1

〉
way less tilted toward 0, or

to say it differently, its bias, ε = P
(〈
e\1,h\1

〉
= 0
)
− P

(〈
e\1,h\1

〉
= 1
)
, is smaller than in

the LDPC decoding context. This gives the key insight on where the hardness of this attack
comes from: the smaller this bias is, the noisier e1 is, and more precisely, as we will see, the
attack will require essentially a number N = 1/ε2 of sparse dual vectors in order to recover
e1 with good probability. As we will see later, when decoding random linear code, this bias
is exponentially small in the weight of the error, and, as such the decoder will require an
exponential number of sparse dual vectors to decode. This algorithm was slightly improved
(by polynomial factors) and analyzed non asymptotically by [Ove06]. Then, [FKI07] proposed
an iterative version of this algorithm and analyzed it under a certain simple model. Then
[DT17a] made a systematic and asymptotic analysis of Statistical decoding and showed that
the simpler model made in [FKI07] could not hold.

Very interestingly statistical decoding completely departed from the traditional attacks, in
the sense that it did not make any bet on the error like for ISD’s. Also, the combinatorial tech-
niques (collision, representation, ...) used by most ISD’s are very efficient to decode/compute
low weight codewords in the high regime rates, i.e. gaining a square root over Prange from
the introduction of collisions by Dumer, but have little to no gain in the low regime rate,
i.e. all the ISD’s have the complexity of the Prange decoder. In reverse, it is readily seen
that these techniques could be used to efficiently compute low weight dual vectors in the
low regime rate, for example to produce an exponential number of them in amortized time
poly (n) [DT17a, §7.3]. As such, one could expect that one of the advantages of such dual
attacks would be to gain in the low regime rate.

2.2.1.1 Poor performances of statistical decoding.

When the weight of the error is linear in n. In fact, it turns out that the above intuition
is completely insufficient here, indeed as [DT17a, Figure 6] shows, even by considering a genie-
aided variant of statistical decoding, that is if we neglect the cost of computing the dual vectors
(the complexity of this Genie-aided variant is then simply Õ(N), the number of dual vectors
considered) is significantly outperformed asymptotically by even the Prange decoder, when
decoding at the Gilbert-Varshamov distance, see Fig. 2.3.

When the weight of the error is sublinear in n. Suppose that we are decoding a code
of rate R in the sublinear error weight regime, that is t = o(n). [DT17a, Proposition 7]
also analyzed statistical decoding, when a slight variation of the Prange decoder was used
to compute the short dual vectors: it produces vectors of relative weight R/2 + o(1) in time
poly (n). In that case, the complexity of the attack was also much worse than even the Prange
ISD decoder, namely they got its square:

2−2 t log2(1−R)(1+o(1)). (2.20)

Using anything else than this variation of Prange’s decoder to compute lower weight dual
vectors in this sublinear regime seems unfeasible since all the other methods which strictly
beat this relative R/2 weight are all exponential in n. All in all [DT17a] concludes that it
looks hard to find any relevant parameters regime where this algorithm would even beat the
Prange decoder.
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Figure 2.3: Asymptotic complexity exponent of the Prange decoder and the asymptotic com-
plexity exponent (as it is defined in [DT17a, Definition 1] and given in [DT17a, Theorem 2])
of Genie-aided Statistical decoding when decoding a random code of rate R at the Gilbert-
Varshamov distance.

A path to improvement as an open question. In [DT17a, Conclusion], it is suggested
that instead of recovering only one position of the error at a time, one could consider multiple
positions of the error at a time. This is precisely the key idea we will leverage in Chapter 5
to make a dramatic gain in the asymptotic exponent of the algorithm.

Before giving the key steps of the analysis of [DT17a] which yielded those results let us
be more precise about what the algorithm does.

2.2.2 The statistical decoding algorithm

Repeat n times the following procedure to recover each position at a time. To recover the
i’th position ei compute a set H of N dual vectors h of low weight and such that hi = 1.
Then compute a score function F which encodes the number of times ⟨y,h⟩ is 0 or 1, namely

F
def
=
∑

h∈H

⟨y,h⟩ (2.21)

where ⟨y,h⟩ is computed over F2 but the sum is computed over Z. It then decides the value
of ei depending on if F is greater than a well chosen threshold T . For most parameters the
decision will be that ei = 0 if F ⩾ T , but it can be reversed in some degenerate parameters
where

〈
e\i,h\i

〉
would in fact be biased toward 1 and not 0. The complexity of this algorithm

is, up to a polynomial factor, the complexity of computing the N sparse dual vectors.

2.2.3 Analysis

Let us recap here the main steps of the asymptotic analysis of statistical decoding made
by [DT17a], the non asymptotic part of this analysis can also be found in [Ove06]. Let us
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2.2. Dual attacks in coding theory: statistical decoding

focus here on recovering the first position e1. The question really is how big must N be in
order for the distinguisher to be able to make the right decision with good probability. The
rough intuition coming from information theory is that the number of dual vector considered
must be greater than 1/ε2 where ε is the bias of the noise

〈
e\1,h\1

〉
(whatever this means

distribution wise). Before telling precisely how this was achieved let us make two remarks
coming from [DT17a].

Single dual weight w. It is sufficient, as long as we are only interested in the asymptotic
exponent and not in the polynomial term in front of the complexity, to restrict ourselves to
a single dual vector weight w. This is precisely what we will do in this thesis. The intuition

behind this is that the bias of the noise will exponentially depend on w
def
= |h| and thus a

single weight will dominate the whole complexity.

Having sufficiently many dual vectors. Note that there is the natural constraint on N ,
the number of computed dual vectors, that it must be smaller than the number of available
dual vectors of weight w,

N ⩽

(
n
w

)

2k
(2.22)

which is the expected number for random codes. As such, two terms are competing: w must
be sufficiently big such that the number of available dual vectors is superior to the number
of needed dual vectors to distinguish, but this also increases with w. This is illustrated later
in Fig. 2.4.

2.2.3.1 Distribution of the score function

The analysis is done in the natural framework where the procedure computing the dual
vectors outputs a list H of N vectors h which are each taken uniformly and independently
at random in C⊥ and such that |h| is weight w and h1 = 1. It boils down to understanding
the distribution of the score function which we recall is

F
def
=
∑

h∈H

⟨y,h⟩

=
∑

h∈H

⟨e,h⟩

= e1 +
∑

h∈H

〈
e\1,h\1

〉
.

Notice that a priori the distribution of each term in the sum deeply depends on the structure of
the underlying code C. As such, this leads [Ove06, DT17a] to make the following assumption
to make their analysis tractable.

Assumption 1 (Distribution of the noise [DT17a, Asssumption 1].). The distribution of〈
e\1,h\1

〉
is approximated by the distribution of

〈
e\1,h

′〉 when h′ is taken uniformly at random

in Sn−1
w−1.

This allows to make intervene the fundamental quantity K
(n)
w (t), namely the Krawtchouk

polynomial of order n and degree w which is related to the bias of ⟨e,h⟩ in the following way.
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Proposition 16. Let e ∈ Snt . Let h ∼ U (Snw). We have that

P (⟨e,h⟩ = 1) =
1− δ(n)w (t)

2
, where δ(n)w (t)

def
=
K

(n)
w (t)(
n
w

) .

It can be written alternatively as:

E
(
(−1)⟨e,h⟩

)
= δ(n)w (t) .

Remark 7. We make a quick survey regarding these polynomials in Section 2.2.4 which will
serve a reference for the rest of this thesis.

That is, under the previous assumption, and using the previous proposition with the fact
that ⟨y,h⟩ = e1 +

〈
e\1,h\1

〉
and that

∣∣h\1
∣∣ = t− e1 we get that

Ph (⟨y,h⟩ = 1) =
1 + δ

(n−1)
w−1 (t− 1)

2
, if e1 = 1,

Ph (⟨y,h⟩ = 1) =
1− δ(n−1)

w−1 (t)

2
, if e1 = 0.

Still, this assumption is insufficient to say anything useful about the distribution of F as this
deeply depends on the dependencies between each sample, as such they make this additionnal
independence assumption.

Assumption 2 (Independence [DT17a, Asssumption 2]).
(〈
e\1,h\1

〉)
h∈H

are mutually in-
dependent.

All in all, this allows to model the score function as a Binomial distribution.

Model 1 (Model on the score function [Ove06, DT17a]). The score function is modeled as
follows:

F |e1 = 1 ∼ Binomial

(
N,

1 + δ
(n−1)
w−1 (t− 1)

2

)

F |e1 = 0 ∼ Binomial

(
N,

1− δ(n−1)
w−1 (t)

2

)
.

2.2.3.2 Concentration of the score function

Applying Chernoff’s bound allows to show that as long as their respective expectations are

some Ω
(√

f(n)
) √

N apart then we can distinguish both cases with probability 1−e−Ω(f(n)).

Using the union bound, we can show that taking

N = O


 log n
(
δ
(n−1)
w−1 (t) + δ

(n−1)
w−1 (t− 1)

)2


 (2.23)

allows recovering e with constant probability.
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2.2.3.3 Asymptotic analysis

The goal here is to devise the asymptotic expansion of
(
δ
(n−1)
w−1 (t) + δ

(n−1)
w−1 (t− 1)

)2
. Recalling

that δ
(n)
w (t)

def
= K

(n)
w (t)

(nw)
and as we already know that

(
n
w

)
= Õ

(
2h(w/n)n

)
, the asymptotic

analysis of
(
δ
(n−1)
w−1 (t) + δ

(n−1)
w−1 (t− 1)

)2
only boils down to devising the asymptotic expansion

of
(
K

(n−1)
w−1 (t+ 1) +K

(n−1)
w−1 (t+ 1)

)2
. The asymptotic expansion of K

(n−1)
w−1 (x) is known from

[IS98, Theorem 3.1]: it can essentially be expressed as some f(x)2g(x) where f is poly bounded
and can be positive, negative or null, and g is essentially positive and decreasing in x ⩽ n/2.

Starting from this, [DT17a] estimates the asymptotic expansion of δ
(n−1)
w−1 (t) + δ

(n−1)
w−1 (t− 1)

with the help of 3 quite technical statements [DT17a, Lemma 2,3,4]. They do it by adding

the expansion of δ
(n−1)
w−1 (t) and δ

(n−1)
w−1 (t− 1) and computing the result. The difficulty being

that in certain regimes (when w ⩾ n/2 −
√
t (n− t)) Krawtchouk polynomials oscillate and

change sign leading to the possibility that δ
(n−1)
w−1 (t− 1) and δ

(n−1)
w−1 (t) do not add up but

cancel out (a sin appears in [DT17a, Lemma 4]). All in all, this leads them, to tackle this
cancelling issue, to express N asymptotically as a limit inferior, essentially yielding that

lim inf N = −2κ (τ, ω)

where κ (, ) is defined later, in Eq. (2.34) and which we will see is in fact essentially and up

to polynomial factors the asymptotic expansion of δ
(n)
w (t).

A surprising fact. Notably, when decoding a code of constant rate R at relative distance
τGV (τ) the first relative weight ω where there are enough dual vectors to decode is at

ω =

[
1

2
−
√
τGV (τ) (1− τGV (τ))

]
(1 + o(1))

which is around the first relative (to n) zero of K
(n)
w . The following figure Fig. 2.4 illustrates

this behavior. Note that, as the figure shows, the fact that we observe that when ω increases

further beyond the first intersection point (the first relative zero of K
(n)
w ) the number of

available dual vectors stays equal to the number of required dual vectors (i.e. we have no
choices but to compute all the available dual vectors of relative weight ω) is predictable. The
contrary (i.e. we have more dual vectors available than needed) would have meant that we
could have decoded with good probability above the Gilbert-Varshamov distance: as we will
see κ (, ) is continuous in both variables, as such any gap between the two curves would have
meant that we could have increased the relative decoding distance τ above τGV (R).

2.2.4 A short survey on Krawtchouk polynomials

A lot of the following propositions and definitions can be found in [KS21].

2.2.4.1 On the hypercube

Krawtchouck polynomials can simply be defined using Fourier theory.
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Figure 2.4: Asymptotic exponent, relative to the code length, of the number of needed dual
vectors of relative weight ω against the number of available dual vectors when decoding a code
of rate R = 0.5 at relative distance τ = τGV (R). The red dot is at ω = 1/2−

√
τ (1− τ).

Definition 23 (Fourier transform). Let f : Fn
2 → R be a real valued function. The Fourier

transform f̂ of f is defined as the function

f̂ : Fn
2 → R
y 7→ ∑

x∈Fn
2
f(x)(−1)⟨y,x⟩

A Krawtchouk polynomial is exactly the Fourier transform of a Hamming sphere.

Definition 24 (Krawtchouk polynomial. First definition on Fn
2 ). Let n ∈ N and let t, w ∈

J0, nK. Let x be any vector of Snt , we define the Krawtchouk polynomial of order n and degree
w as

K(n)
w (t)

def
= 1̂Sn

w
(x) . (2.24)

As this definition is independent of x ∈ Snt we will also abusively define and use the notation

K(n)
w (x)

def
= K(n)

w (|x|) .

Notice that this is, up to a factor
(
n
w

)
, by definition, the bias of ⟨h,x⟩ when x is of weight

t and h is taken uniformly at random in Snt .

Definition 25. Let n,w, t ∈ N. We define

δ(n)w (t)
def
=
K

(n)
w (t)(
n
w

)

Fact 12. Let e ∈ Snt be a fixed vector and h ∼ U (Snw). We have that

P (⟨e,h⟩ = 1) =
1− δ(n)w (t)

2
and E

(
(−1)⟨e,h⟩

)
= δ(n)w (t) .
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Notably, Krawtchouck often appear in coding theory to relate the weight enumerator of a
linear code with the weight enumerator of its dual with the celebrated MacWilliams identity.

Theorem 3 (MacWilliams identity [MS86, Theorem 1]). Let C be an [n, k]-linear code. For
any w ∈ J0, nK we have that

Nw

(
C⊥
)
=

1

2k

n∑

i=0

Ni (C)K(n)
w (i)

where Ni (C) is the number of codeword of C of weight i.

This theorem is in fact a direct consequence of the Poisson summation formula and the
definition of Kratwchouk polynomials.

Proposition 17 (Poisson summation formula [MS86, Lemma 11]). Let C be an [n, k]-linear
code and let f : Fn

2 → R be a function. We have that

∑

h∈C⊥

f(h) =
1

2k

∑

c∈C
f̂(c).

2.2.4.1.1 Basic properties The following basic properties can easily be derived from the
definition and tells us that, when devising a property on Krawtchouk polynomials one can
interchange the role of t and w at will and that it is enough to study them up until t ⩽ n

2 .

Proposition 18 (Basic properties). We have that

K(n)
w (0) =

(
n

w

)
.

Symmetry
K(n)

w (t) = (−1)wK(n)
w (n− t) .

Reciprocity (
n

t

)
K(n)

w (t) =

(
n

w

)
K

(n)
t (w) .

This directly yield that the bias is symmetric.

Fact 13.
δ(n)w (t) = δ

(n)
t (w)

Importantly the family of polynomials
(
K

(n)
0 , K

(n)
1 , . . . , K

(n)
n

)
is orthogonal relative to

the natural counting measure. This simply comes from Parseval identity along with the fact

that K
(n)
w = 1̂Sn

w
to argue that the associated inner product is

〈
K

(n)
w ,K

(n)
t

〉
= 2n

〈
1Sn

w
,1Sn

t

〉
.

Proposition 19 (Orthogonality of Krawtchouk polynomials). Let us define the finite measure
µ (i) as

µ (i)
def
=

(
n

i

)
(2.25)
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2. State of the art of generic decoders

and the associated inner product ⟨, ⟩ for f and g two functions taking values from J0, nK:

⟨f, g⟩ def=
n∑

i=0

µ (i) f(i) g(i) (2.26)

We have that 〈
K(n)

w ,K
(n)
t

〉
=

{
0 if w ̸= t

2n
(
n
w

)
if w = t.

. (2.27)

Proof.

〈
K(n)

w ,K
(n)
t

〉
=
∑

x∈Fn
2

K(n)
w (x)K

(n)
t (x)

=
∑

x∈Fn
2

∑

h∈Sn
w

(−1)⟨h,x⟩
∑

g∈Sn
t

(−1)⟨g,x⟩

=
∑

h∈Sn
w

∑

g∈Sn
t

∑

x∈Fn
2

(−1)⟨h+g,x⟩

=
∑

h∈Sn
w

∑

g∈Sn
t

2n1h=g

=

(
w

n

)
2n1w=t.

Last, Krawtchouk polynomials have a lot of recurrence relations. We will use the two
following in this thesis to easily compute the difference of biases.

Proposition 20. Let n,w, t ∈ N such that 1 ⩽ w, t ⩽ n. We have that

K(n)
w (t− 1) = K(n−1)

w (t− 1) +K
(n−1)
w−1 (t− 1) ,

K(n)
w (t) = K(n−1)

w (t− 1)−K(n−1)
w−1 (t− 1) .

Proof. By Definition 24 of Krawtchouk polynomials for any x ∈ Snv we have

K(n)
w (v) = K(n)

w (x)

=
∑

h∈Sn
w

(−1)⟨h,x⟩.

By taking any x′ ∈ Sn−1
t−1 and constructing x = (0 || x′) ∈ Snt−1 we get, by decomposing the

previous sum on the values of h on the first position, that

K(n)
w (t− 1) = K(n−1)

w (t− 1) +K
(n−1)
w−1 (t− 1) .

In the same manner, taking this time x = (1 || x′) ∈ Snt we get

K(n)
w (t) = K(n−1)

w (t− 1)−K(n−1)
w−1 (t− 1) .
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2.2. Dual attacks in coding theory: statistical decoding

2.2.4.2 As a real polynomial

Let us now give a more ”computationally effective”, alternate expression for K
(n)
w :

Proposition 21 (Krawtchouk polynomial. Second definition.). Let w, n ∈ N and let x ∈ R.
We define the Krawtchouk polynomial of degree w and order n as:

K
(n)
w : R → R

x 7→ ∑w
j=0(−1)j

(
x
j

)(
n−j
w−j

)
.

(2.28)

This definition is coherent with Definition 24 on J0, nK.

It is readily seen that

Fact 14. K
(n)
w is a real polynomial of degree w.

In general, orthogonal polynomials of degree w have w distinct real roots, more precisely
we have the following.

Proposition 22 (Roots [KS21, §2.2.5]). Let w be a function of n. K
(n)
w has w real valued

roots r1 < · · · < rw, all lying in the root region [n/2 −
√
w(n− w), n/2 +

√
w(n− w)].

Moreover,

ri+1 − ri = o(n) .

Definition 26. We define the root region limit as

Root
(
K(n)

w

)
def
= n/2−

√
w(n− w).

This root region profoundly delimits the behavior of the Krawtchouck polynomials, namely
outside this root region it is monotonic, and more precisely decreasing in J0, n/2−

√
w(1− w)K,

but inside the root region it oscillates while being unimodal between each root, for example
see Fig. 2.5.

2.2.4.3 Asymptotic behavior

Lastly, let us state the asymptotic behavior of these polynomials. This has a central role

when analyzing asymptotically dual attacks. First in the root region, it turns out that K
(n)
w

achieves its norm between each root, namely:

Proposition 23 (Behavior inside the root region [KS21, §2.2.6]). For any n, w ∈ N such
that w ∈ J0, nK there exist w − 1 integers ti ∈ N, each in between the roots: ri < ti < ri+1,

where K
(n)
w achieves point-wise its L2 norm, more precisely:

(
n

ti

)
K(n)

w (ti)
2 = Ω̃n (1) 2n

(
n

w

)
. (2.29)

Second, outside the root region we have
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K
(n)
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Figure 2.5: Symmetric logarithmic plot of K
(n)
w with w = 9 and n = 160.

Proposition 24 (Behavior outside the root region [KS21, §2.2.7]). For any t ⩽ n
2−
√
w (n− w)

we have that:

K(n)
w (t) = Ω̃

(
2γ(τ, ω) n

)
(2.30)

where γ (τ, ω) is defined as follows for any τ, ω ∈ [0, 1
2 ] such that τ ⩽ ω⊥ where ω⊥ def

=
1
2 −

√
ω(1− ω).

Let z(ω, τ)
def
=

1−2τ−
√

D(ω,τ)

2(1−ω) where D (ω, τ)
def
= (1− 2τ)2 − 4ω(1− ω) we define

γ (ω, τ)
def
= τ log2(1− z (ω, τ)) + (1− τ) log2(1 + z (ω, τ))− ω log2 (z (ω, τ)) .

A simple proof of a weaker version (where it is supposed that w and t grow linearly with
n) of both previous propositions can be found [KL95, §IV]. Let us define the function κ̃ (, )

that captures the asymptotic behavior of
log2

∣∣∣K(n)
w (t)

∣∣∣
n , or, to say it more precisely of the points

t which verifies either Eq. (2.29) or Eq. (2.30), namely

Definition 27. Let ω, τ ∈ [0, 1]. We define κ̃ (ω, τ) as:

κ̃ (ω, τ) =

{
γ (ω, τ) if τ < ω⊥

1+h(ω)−h(τ)
2 else

(2.31)

As shown by [KS21, §2.1.2] this function continuous in both variables and, fixing ω, is
decreasing and concave for τ < ω⊥ and decreasing and convex for τ ∈ [ω⊥, 1/2], we illustrate
it in Fig. 2.6.
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Figure 2.6: Plot of κ̃ (ω, τ) as a function of τ with ω = 0.05625.

Asymptotic properties of Krawtchouk polynomials

Proposition 25 ([KS21, §2.1.2]). κ̃ (, ) is continuous and differentiable with

∂κ̃ (ω, τ)

∂τ
=

{
log2 (r (ω, τ)) if τ < ω⊥

1
2 log2

(
τ

1−τ

)
if ω⊥ < τ < 1

2

where

r (ω, τ) =
1− 2ω +

√
(1− 2ω)2 − 4τ(1− ‘τ)

2 (1− τ) .

Moreover, fixing ω, it is decreasing in 0 ⩽ τ ⩽ 1/2.

Proposition 26 ([KS21, Lemma 2.3]). For ω, τ ∈ [0, 1/2] we have that

h (τ) + κ̃ (ω, τ) = h (ω) + κ̃ (τ, ω)

Corollary 4. We have that

∂κ̃ (ω, τ)

∂ω
=




− log2

(
ω

1−ω

)
+ log2 (r (τ, ω)) if τ < ω⊥

−1
2 log2

(
ω

1−ω

)
if ω⊥ < τ < 1

2

where r (ω, τ) is defined in Proposition 25.

2.2.4.4 Asymptotic expansion of the key bias

Finally, we are now able to give the asymptotic expansion of the bias δ
(n)
w (t)

def
= K

(n)
w (t)

(wn)
using

the two propositions giving the asymptotic behavior of Krawtchouk polynomial inside and
outside the root region. This will be used in all this thesis.
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Corollary 5 (Asymptotic expansion of the bias). Let n ∈ N be growing to infinity and let

τ, ω ∈]0, 1/2[ be implicit functions of n and define t
def
= ⌊τ n⌋. We have that

1. If τ < ω⊥ then by defining w
def
= ⌊ωn⌋ we have that

∣∣∣δ(n)w (t)
∣∣∣ = Ω̃

(
2κ(ω, τ) n

)
(2.32)

where we add furthermore that the Ω̃ () does not depend on τ and ω.

2. If τ ⩾ ω⊥ there exists w = ω n+ o(n) such that

∣∣∣δ(n)w (t)
∣∣∣ = 2(κ(ω, τ)+o(1)) n, (2.33)

where
κ (ω, τ)

def
= κ̃ (ω, τ)− h (ω) (2.34)

and where κ̃ (, ) is defined in Definition 27.

Remark 8. More formally the first point really say that there exists a positive function f
such that for any two functions τ, ω : N→ [0, 1/2] we have that for any n ∈ N that

∣∣∣δ(n)⌊ωn⌋ (⌊τn⌋)
∣∣∣ ⩾ 1

f(n)
2κ(ω, τ) n.

Proof. The first point is straightforward from Proposition 24. The second point comes by
using the Krawtchouk reciprocity rule Proposition 18 along with the fact that two consecutive
roots are o(n) distanced (Proposition 22) along with Proposition 23 telling us that Krawtchouk
polynomials achieve their norms between consecutive roots.

Now, using the expression of the derivative of Krawtchouk polynomials given above we

can devise easily the shape of the bias δ
(n)
w (t) when t is sublinear in n.

Proposition 27 (Asymptotic expansion of the bias in the sublinear regime). Let τ = o(1)
and let ω ∈ [0, 1/2[ be a constant. We have that

κ (ω, τ) = τ log2 (1− 2ω) + o(τ) . (2.35)

Proof. From Proposition 25 we have that

∂κ (ω, τ)

∂τ
= log2

(
1− 2ω +

√
(1− 2ω)2 − 4τ(1− τ)
2 (1− τ)

)

Using Taylor’s theorem in τ we get that:

κ (ω, τ) = κ (ω, 0) + τ log2

(
1− 2ω +

√
(1− 2ω)2

2

)
+ o(τ)

= τ log2 (1− 2ω) + o(τ)
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Chapter 3

The LPN problem

Summary

In this very short chapter, we present the LPN problem and, in a non-exhaustive manner,
introduce two of the algorithms used to solve it. We will later use these ideas to build our
dual attack.
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3.1. Definition

3.1 Definition

The LPN problem is a learning problem whose hardness underlies many post-quantum cryp-
tographic constructions. To name a few, these include encryption schemes [Ale03, DP12,
DMN12, DV13], the HB authentication protocol family, and its extensions for construct-
ing symmetric-key message authentication codes (MACs) [HB01, JW05, GRS08, KPC+11,
HKL+12]. It is a special case of the LWE problem in lattice-based cryptography [Reg05].
The complexity of the best-known LPN solvers are used to determine the parameters of the
schemes built on it. Essentially, in this problem, given access to an oracle that outputs, upon
each call, a noisy linear combination of a secret, the goal is to recover the secret using as
many queries as needed.

Definition 28 (LPN oracle O(s, ε) and LPN problem LPN (k, ε)). For any s ∈ Fk
2 and

ε ∈ [0, 1] we define O(s, ε) the oracle that when called outputs

(g, ⟨s,g⟩+ e) where





g ∼ U
(
Fk
2

)

e ∼ Bernoulli
(
1−ε
2

)

g and e are independent

.

We sometimes refer to τ
def
= 1−ε

2 as the noise level of the oracle and ε as its bias. We define the
LPN problem LPN (k, ε) of dimension k and bias ε as the problem where a secret s is chosen
uniformly at random in Fk

2 and you are given access to O (s, ε) with the goal of recovering s
from this oracle.

Clearly, after having generated N samples (g(i), b(i)), solving the problem really is solving
a decoding problem of length N and dimension k given by the following generator matrix and
noisy codeword:

G
def
=
((
g(1)

)⊺ · · ·
(
g(N)

)⊺)
and y

def
=
(
b(1) · · · b(N)

)
(3.1)

The difference with DPG (N, k, t) is that the noise is not of fixed weight t. More precisely we
are interested in the following decoding problem.

Definition 29. Decoding problem DPBer
G (N, k, ε). Given C and y where C is chosen by taking

its generator matrix G ∼ U
(
Fk×N
2

)
and y = c + e where c = sG and s ∼ U

(
Fk
2

)
and the

coordinates of e are distributed i.i.d according to Bernoulli
(
1−ε
2

)
. The goal is to recover s.

From Shannon’s second theorem for linear codes, see [RU08, Th. 4.68, P. 203], it is
possible to have a simple condition for being able to recover the secret.

Fact 15. As long as N = Ω
(
s/ε2

)
then it is possible to solve DPBer

G (N, k, ε) with probability
1− o(1). More precisely we have that s = argminm∈Fk

2
|y −mG| with probability 1− o(1).

Basically the theorem states that as long as the rate of the code s/N is below the channel
capacity C then we can recover the secret with good probability. Here the channel considered
is a binary symmetric channel with crossover probability 1−ε

2 whose capacity C is given by
1− h (1− ε) = Ω

(
ε2
)
. This gives our fact.

Coming back to the LPN problem, because we have access to an unlimited amount of
samples, solving it really is solving DPBer

G (N, k, ε) but with N arbitrarily large. Basically this
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3. The LPN problem

means that we can have access to many more samples than what is information-theoretically
needed to recover the secret with good probability. This makes the problem much easier than
the standard decoding problem DPH (n, k, t) at constant rate and constant relative error
weight. For example, when the bias ε is constant, all the existing algorithms for solving the
LPN problem, starting from BKW [BKW03], run in slightly subexponential time

2Θ(k/ log(k)).

This is also the number of required queries to the oracle for the BKW algorithm, or to say
differently the length of the final code. The security of all the LPN based cryptographic
constructions that we are aware of are based on a regime where the noise τ =

(
1−ε
2

)
is

relatively low, either constant, or growing to zero: the problem is still conjectured to be
viable for cryptography for noises as little as τ = 1/nc for any constant 0 < c < 1 [YS16]. In
that case however, the best attacks are based on a Prange bet [EKM17] coming from ISD’s.
This essentially allows beating BKW in the low noise regime τ = o(1/ log2 (k)). We do not
focus on those last solvers in this exposition.

3.2 Algorithms for solving LPN

In the LPN world in the mild noise regime, say constant, the dominant family solvers are
given by improvements over BKW [BKW03, LF06, GJL20, BTV15, KF15, BV16, ZJW16]. All
these techniques share the characteristic that they reduce to another LPN problem of smaller
dimension but increased noise. Note that all these algorithms require a certain different
number N of LPN samples which is determined when analyzing the algorithm so without loss
of generality we can suppose that it is fixed.

We take some liberty in our exposition, we refer the reader to the original algorithm for
precision, our goal here is to explain the following three points.

• Present quickly BKW and highlight its differences and similarities with statistical de-
coding.

• Present the idea behind the FFT solver used in [LF06].

• Present the idea behind the so-called covering code technique of [GJL20].

3.2.1 The BKW dimenion reduction procedure

Basically the idea of the BKW reduction is to reduce solving LPN (k, ε) to solving LPN (k − k′, ε′)
where the dimension k − k′ is reduced but the bias ε′ < ε has also decreased, i.e. the
noise has increased. This dimension reduction is done by generating a batch of samples
(g(i),

〈
s,g(i)

〉
+ ei) and then by searching for g(i)’s whose sum is zero on some fixed coordi-

nates, say
∑

i∈I g
(i) is zero on the last k′ coordinates. Summing the corresponding sample

yields a new sample (∑

i∈I
g(i),

〈
s,
∑

i∈I
g(i)

〉
+
∑

i∈I
ei

)

involving only the k − k′ first coordinates of the secret but with larger noise. This is exactly
distributed as the output of the oracle O(sJ1, k−k′K, ε

′) where the bias ε′ of the new noise
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∑
i∈I ei is readily given by

ε′ = ε|I |.

The above equation is a direct consequence of the Piling-up lemma.

Lemma 8 (Piling-up lemma). Let e1 ∼ Bernouilli
(
1−ε1
2

)
and e1 ∼ Bernouilli

(
1−ε2
2

)
be two

independent Bernoulli variables of bias ε1 and ε2 respectively. Then, the sum of the two
variables has bias ε1ε2, namely

e1 + e2 ∼ Bernouilli

(
1− ε1ε2

2

)
.

These sums are obtained with a collision technique that cancels the vectors block by block
in a progressive manner. Basically, we start by writing k′ = a × b for two integers a and b
and split the last k′ coordinates of the vectors into a blocks where each block is composed
of b coordinates. In the first step, we make 2b groups, each group contains the g(i) that are
equal the first block. In each group we choose arbitrarily a vector and sum it to all the other
vectors in the group and then discard this vector. This allows cancelling the first block. We
repeat this process to progressively cancelling the other blocks.

If we started with M samples we essentially end up with M − a2b new samples (because
of at each step we lost 2b samples) of dimension k − k′, but now, because those samples are
the sum of (at most) 22

a
original samples the new bias is (at minimum) ε2

a
. Note that these

new samples are not completely independent.

3.2.2 The BKW Algorithm

In the original BKW algorithm the problem is reduced to a dimension 1 LPN problem which
is then solved by majority voting. What we present here is not exactly what is done in the
original article. Say we are in the usual constant noise regime, namely ε = Θ(1). Taking
k′ = k − 1 and a = 1

2 log2 k
′ and b = 2k′/ log2 k

′ and M = a2b + 1 = 2O(k/ log2 k) allows
us to produce essentially 1 LPN samples of dimension 1 with secret s1 and where the bias

of the noise is (at minimum) ε
√
k = 2Θ(

√
k) in time 2O(k/ log2 k) by using 2O(k/ log2 k) calls

to the original LPN oracle. We can simply iterate this procedure 2Θ(
√
k) times each time

with fresh new samples to produce enough independent reduces samples to be able to recover
s1 with good probability. The overall complexity of this attack is 2O(k/ log2 k) in time and
N = 2O(k/ log2 k) in query complexity to the oracle.

3.2.2.1 Link and difference with statistical decoding

Slightly abstracting the BKW algorithm, one can notice that this really is a dual attack. In
essence BKW computes low-weight dual vectors h of the code generated by G ∈ Fk×N

2 but
with the first row removed. Each dual vector gives the following reduced LPN sample:

⟨y,h⟩ = ⟨c+ e,h⟩
= ⟨sG,h⟩+ ⟨e,h⟩
= ⟨s,hG⊺⟩+ ⟨e,h⟩
= ⟨s1, (hG⊺)1⟩+ ⟨e,h⟩ .
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3. The LPN problem

Here the support of h is basically the set I presented in the previous section and represent
which samples we select. The secret is given by s1 and the noise ⟨e,h⟩ increases with the
noise rate of the error e and the weight of the dual vector. The secret s1 is recovered by
majority voting, and, as long as we have computed sufficiently many sparse dual vectors h
we can make the right decision with good probability.

Here, unlike statistical decoding that was studied in the constant rate regime, for LPN, the
length of the code can get arbitrarily long. As such we have access to much lower weight dual
vectors that we can compute efficiently. This makes ⟨e,h⟩ significantly less noisy than what
we had in statistical decoding. BKW benefits from this. Additionally, in the original BKW
proposal (and the illustrative solver we gave), all those created dual vectors have disjoint
support. This makes the analysis tractable as in that case the variables ⟨e,h⟩ are mutually
independent (hence, we do not need here Assumption 2 as needed in the analysis of statistical
decoding). This is loosened in LF1 and LF2 [LF06] to save some samples but it makes the
analysis heuristic.

3.2.3 Reducing to a higher dimension for free with an FFT

BKW was later improved in [LF06] by using an FFT technique that can be traced back to
[Gre66] for decoding Reed-Muller codes.

Proposition 28. Let N, k ∈ N. There exists a procedure that for any [N, k]-linear code C with
generator matrix G ∈ Fk×N

2 and any y ∈ FN
2 outputs for all m ∈ Fk

2 the value of |mG+ y|
in time and memory

O
(
max

(
k2k, N

))
.

In particular this allows us to find the codeword of C which is the closest to y.

We give more details about this procedure and the proof of this statement in Section 3.2.3.1.
The idea is to notice that reducing to an LPN problem of dimension one as is the case in BKW
is suboptimal. Indeed, clearly, the number N ′ of reduced LPN samples ⟨s1, (hG⊺)1⟩ + ⟨e,h⟩
that we need (say N ′ = 2Θ(k) from the previous section) to recover s1 is well above k′2k

′

where k′ = 1 is the dimension of this reduced problem. So basically we are deep into a regime
where the FFT decoder cost is dominated just by the length N ′ of the code. Consequently,
to balance the costs, we have an interest in reducing to a higher dimension LPN problem by
computing dual vectors in a lower dimensional subcode, this increases k′ but decreases N ′,
the number of required samples to solve the reduced problem, as now we are able to compute
dual vectors of lower weight.

3.2.3.1 An FFT based decoder for codes of very small rate

This decoder basically computes the distance between y and all the codewords of the code
c ∈ C using a Fourier transform as described in the next standard proposition.

Proposition 29 (Key proposition). Let G ∈ Fk×N
2 and y ∈ FN

2 . Define the function f that,
for each a ∈ Fk

2 associates

f (a)
def
=

∑

i∈J1, NK :Gi=a

(−1)yi .

We have that the Fourier transform f̂ of f verifies:

∀m ∈ Fk
2 f̂ (m) = n− 2 |y −mG| .
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Proof.

f̂ (x)
def
=
∑

r∈Fs
2

f (r) (−1)⟨r,x⟩

=
∑

a∈Fk
2

∑

i∈J1, NK :Gi=a

(−1)yi−⟨a,x⟩

=
N∑

i=1

(−1)yi−⟨Gi,x⟩

= n− 2 |y −mG| .

Finally, using a standard Fast Fourier Transform (FFT) these distances can be computed
in time O

(
k2k
)
.

Proposition 30 (Fast Fourier Transform [CT65]). There exists a procedure a Fast Fourier
Transform FFT which takes as input a function f : Fk

2 → R and outputs its Fourier transform

f̂ in time and memory

O
(
k2k
)

Proof. We only give the outline of this standard proof. For b ∈ F2, let us define the function
fb : Fn−1

2 → R as fb (r) = f((b || r)). The FFT(f) procedure uses the following recursion
formula

f̂ (x)
def
=
∑

r∈Fn
2

f(r)(−1)⟨r,x⟩

=
∑

r∈Fn−1
2

f((0 || r))(−1)⟨r,x\1⟩ + (−1)x1
∑

r∈Fn−1
2

f((1 || r))(−1)⟨r,x\1⟩

= f̂0
(
x\1
)
+ (−1)x1 f̂1

(
x\1
)

to compute f̂ (x) in batch.

Algorithm 10 An LPN solver using the FFT trick of [LF06]

Name: FFT-LPN-Solver
Input: L ▷ L is a list of samples of the form (a, b) where a ∈ Fk

2 and b ∈ F2

1: Compute for each a ∈ Fk
2

fL(a) =
∑

(g,b)∈L
g=a

(−1)b

2: FL ← FFT
(
fL
)

3: return FL
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3.2.4 The covering code technique

The main technical novelty in [GJL14] lies in a method, that does not involve combining
samples, to reduce the dimension of an LPN problem whose secret s is of low Hamming
weight at a cost of an increase in the noise (growing with the dimension loss and the secret
weight). We present this reduction in Section 3.2.4.1. The crux is that there exists a standard
reduction to make the coordinates of the secret distributed as the error, this reduction does
not increase the noise but simply requires that we accept loosing a few samples, say k if we
want to completely replace the distribution of the secret. In a setting where the noise is
constant this makes the secret sparse. We recall the reduction here.

Fact 16 (Corollary of Fact 11). Let C be an [N, k]-linear code of generator matrix G and let
y = sG+ e where c ∈ C. Provided that Jk + 1, NK is an information set of C⊥ we have that

yJk+1, NK + yJ1, kKR =
(
eJ1, kK

)
R+ eJk+1, NK

where R
def
= Lift

(
C⊥, Jk + 1, NK

)
. We recall that R ∈ Fk×(N−k)

2 is the unique matrix such
that hJ1, kK = R

(
hJk+1, NK

)
.

Remark 9. The new secret is given by
(
eJ1, kK

)
.

Solving this new problem trivially allows us to solve the original one. In practice however
[GJL14] does not need to completely replace the secret distribution but rather say only make
the first s positions of the secret sparse (this can be done at the cost of s samples: the
first s positions of the secret becomes eJ1, sK, the rest is unchanged). So, from these mixed
shaped samples they start to apply some BKW reduction steps to reduce to an LPN problem
of dimension s and whose secret is eJ1, sK and then apply the following reduction using the
sparseness of the secret to reduce the dimension even more.

3.2.4.1 Reducing the dimension of a sparse LPN problem

Say we have access to an oracle giving access to the following sample

(g, ⟨s,g⟩+ e)

where the secret s ∈ Fk
2 is of low Hamming weight and the error e is taken according to a

certain Bernouilli distribution. Note that this reduction is oblivious to the fact that the LPN
sample can come from an original LPN problem or come from say an LPN obtained with a
BKW type reduction. The idea is to approximate g into a lower dimension subspace. Say we
have an auxiliary [k, kaux] linear code Caux and we decode g onto Caux to obtain

g = caux + eaux, where caux ∈ Caux and |eaux| is low
Now clearly this allows to rewrite our sample as

⟨s,g⟩+ e = ⟨s, caux + eaux⟩+ e (3.2)

= ⟨s, caux⟩+ ⟨s, eaux⟩+ e (3.3)

Importantly, notice that we have now a linear combination of the secret s with some codeword
caux lying in a lower dimension subspace, this can be leveraged by simply taking a generator
marix Gaux of Caux and writing that caux = mauxGaux to obtain that

⟨s, caux⟩+ ⟨s, eaux⟩+ e = ⟨sG⊺
aux,maux⟩+ ⟨s, eaux⟩+ e.
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Hence we in fact have access to the following sample

(maux, ⟨s,g⟩+ e) =


maux︸ ︷︷ ︸

∈Fkaux
2

,

〈
maux, sG

⊺
aux︸ ︷︷ ︸

secret

〉
+ ⟨eaux, s⟩+ e︸ ︷︷ ︸

noise


 .

Clearly the dimension of the LPN sample has decreased from k to kaux but now we have an
additional noise term ⟨eaux, s⟩ which clearly increases with the dimension loss: at best if we
decoded g onto the closest codeword caux of caux we can expect that eaux is of the order
dGV (k, kaux).

3.2.4.2 Rest of the algorithm

In practice after the reduction an FFT is performed to solve this last LPN problem and if the
number of samples is right they expect to be able to distinguish the compressed secret sG⊺

aux

and argue that they can easily recover the secret from there. An additional guessing phase is
present in the algorithm that we did not present here. Overall this gave a profitable tradeoff
between the BKW reduction step and this new code based reduction step.

It was proposed there to choose good codes as auxiliary codes Caux, say perfect codes
and precompute once and for all a syndrome table that is used to decode. More precisely,
considering H a parity-check matrix of Caux, store in a table (Heaux, eaux) for all the errors
eaux ∈ Fk

2. Each sample g is then decoded by computing its syndrome Hg and returning the
associated eaux of lowest weight. For efficiency and as a practical construction, it was proposed
there to construct Caux as a juxtaposition (i.e. the Cartesian product) of smaller good codes.
The rationale is that the syndrome table of each code can be enumerated independently and
that provided that we took enough codes, we can make this enumeration step negligible in
front of the other costs of the algorithm.
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Chapter 4

Proof of a variant of statistical
decoding

Summary

The contribution of this short chapter is to prove, without using any assumptions (see the
traditional Assumption 1 and Assumption 2), a variant of Statistical decoding against the
problem of distinguishing between a noisy codeword and a uniformly random word in the
space. We do this by devising a second-order concentration bound on the score function
that encodes the bias of the main quantity underlying dual attacks. We obtain, up to
polynomial factors, the same results as if we had used the traditional assumptions. We
discuss the procedures that can be used to compute the low-weight dual vectors and their
output distribution. We turn this distinguisher into a decoder with a standard reduction, we
will use this provable dual attack in the next chapter. Finally, we propose a simplification of
the asymptotic analysis of statistical decoding given by [DT17a].
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4.1. A simple dual distinguisher

4.1 A simple dual distinguisher

4.1.1 The distinguishing problem

In this chapter we devise a simple dual attack against the problem of distinguishing a noisy
codeword from a uniformly distributed word of the space.

Definition 30 (Distinguishing problem DiPG (n, k, t)). Given a couple (C,y) where C ∼
UG (n, k), namely C is given as a generator matrix G that was taken uniformly at random
in Fk×n

2 and y is chosen according to the uniform word distribution D0 with probability 1/2
or according to the noisy codeword distribution D1 with probability 1/2, the goal is to output
i ∈ {0, 1} and the decision is good if y was chosen according to Di.

• D0 = U (Fn
2 ).

• D1 outputs y = c+ e where c ∼ U (C) and e ∼ U (Snt ).
Remark 10. Note that we consider the case when C is taken by choosing its generator matrix
uniformly at random rather than its parity-check matrix as it makes the analysis of our dual
attacks slightly easier. But this is only a very minor tweak compared to the previous setting,
see Remark 3 for more details.

This distinguishing problem is of importance as there are many standard polynomial
reductions from decoding to distinguishing, we give such a reduction in Section 4.4.

4.1.2 Dual distinguisher

We recall that the base observation behind dual attacks in general is that when y = c + e
is a noisy codeword, a sparse (low Hamming weight) dual vector h ∈ C⊥ yields a linear
combination of the error e, namely

⟨y,h⟩ = ⟨e,h⟩

that is essentially more biased toward 0 (equal to 0 more often than it is equal to 1) as the
weight of e and h decreases. This can be leveraged to decode y or in our case distinguish
whether y is a noisy codeword or uniformly random. Indeed, in the latter case, one can
notice that, because the positions of y are taken at random in Fn

2 the random variable ⟨y,h⟩
is not biased, i.e. is uniform in F2. Now we can increase this small advantage by computing
many dual vectors and make a decision based on the number of times ⟨y,h⟩ is 0 or 1. This is
done by encoding this number in a score function F (that we define for convenience slightly
differently but equivalently from the definition given in Statistical decoding, see Eq. (2.21)).

Definition 31 (Score function). Let y ∈ Fn
2 and let H ⊂ Fn

2 . Define

FH (y)
def
=
∑

h∈H

(−1)⟨y,h⟩

or simply F when the context is clear.

Fact 17. Let C be a linear code of length n and let H ⊂ C⊥⋂Snw and let y = c + e with
c ∈ C. We have that

FH (y) = FH (e) = |H | biash∼U(H ) (⟨e,h⟩) .
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4. Proof of a variant of statistical decoding

Clearly, we expect that FH (y) is 0 when y is taken uniformly at random in Fn
2 while we

expect that FH (y) is greater when y is a noisy codeword. More particularly FH essentially
grows as the weight of e and h decreases and as the size of H increases. Basically our
distinguisher starts by computing a subset H of dual vectors of small weight and makes a
decision upon the value of FH (y), say by deciding that we are in the noisy codeword case
if the score function is above a well-chosen threshold T . The general algorithm is given in
Algorithm 11.

Algorithm 11 Dual-Distinguisher

Name: Dual-Distinguisher
Input: C, y ∈ Fn

2

Parameter: T ∈ N (A threshold)
Require: Procedure Compute-Dual-Vectors(C) outputting a set of small vectors of C⊥.
Output: 1 if we decide that y is a noisy codeword and 0 otherwise
1: H ← Compute-Dual-Vectors(C)
2: if |FH (y)| > T then
3: return 1 ▷ Decide y is a noisy codeword
4: else
5: return 0 ▷ Decide y is uniform

Now, the analysis of this distinguisher relies on the estimation of the value of the score
function in each case. This of course depends on the output distribution of the procedure
computing the low-weight dual vectors. The main tool here are concentration bounds on the
score function around its expectation in each case. The natural choice for the threshold T is
then the middle point between the expectations in each case.

4.2 Analysis when all the dual vectors of a certain weight are
computed

We make the analysis when H is the set of all dual vectors of weight w. We recall in
Section 4.3 some procedures that naturally have this output distribution but this is interesting
independently to study the genie-aided performance of the distinguisher (i.e. the complexity
but overlooking the cost of computing the dual vectors).

In that case we expect that the number N of dual vectors available is as follows.

Lemma 9 (Expected number of available dual vectors.). Let C ∼ UG (n, k) and H
def
=

C⊥⋂Snw, we have that

E (|H |) =
(
n
w

)

2k
.

Proof. This is a direct corollary of the standard Lemma 2 and Fact 5.

4.2.1 Second-order concentration bounds and result

We recall, in this setting, the bias δ
(n)
w (t) naturally intervenes, as, forgetting about the code

structure, we have the following.

87



4.2. Analysis when all the dual vectors of a certain weight are computed

Fact 18. Let e ∈ Snt and let h ∼ U (Snw). The bias of ⟨e,h⟩ is

E
(
(−1)⟨e,h⟩

)
= δ(n)w (t)

where δ
(n)
w (t) is defined in Definition 25.

Our main tool for the analysis of the dual distinguisher is the following second-order
concentration bound on the score function that involves the two previous quantities. We
obtain it by computing the expected value and the variance of the score function and by
applying Bienaymé–Chebyshev inequality.

Proposition 31 (Second-order concentration bounds on the score function). Let n, k, t, w ∈ N
and let f be a positive function. Let C ∼ UG (n, k) and H

def
= C⊥⋂Snw and define N

def
=(

n
w

)
/2k. We have that

P
(∣∣∣FH (e)−Nδ(n)w (t)

∣∣∣ ⩾ f(n)
√
N
)
⩽

1

f(n)
if e ∈ Snt .

P
(
|FH (y)| ⩾ f(n)

√
N
)
⩽

1

f(n)
if y ∼ U (Fn

2 ) .

Moreover Nδ
(n)
w (t) and 0 are the respective expected values of FH (e) and FH (y) and finally

N is an upper bound on the variance of FH in both cases.

This allows us to show that as long as

N ⩾ f(n)2/δ(n)w (t)2

then we can distinguish the uniform case from the noisy codeword case with probability
1− f(n)/2. In particular, taking f(n) =

√
log2(n) we can state the following theorem giving

the performance of our dual distinguisher.

Theorem 4 (Correctness of Algorithm 11 when we compute all the dual vectors of a certain
weight). For all k, t, w ∈ N implicit functions of n ∈ N and any procedure Compute-Dual-Vectors
that are such that

PC∼UG(n, k)

(
Compute-Dual-Vectors(C) = C⊥

⋂
Snw
)
= 1− o(1)

and (
n
w

)

2k
⩾

log2 (n)

δ
(n)
w (t)2

then, taking T
def
= 1

2
(nw)
2k
δ
(n)
w (t), Algorithm 11 solves DiPG (n, k, t) with probability 1− o(1) in

time and memory that are, up to polynomial factors, the time and memory complexities of
the Compute-Dual-Vectors procedure.

Remark 11. Note that we state the previous theorem when the procedure computing the dual
vectors is only asked to produce the whole set only with probability 1 − o(1). We do this so
that there actually exists an efficient procedure that matches this requirement, see for example
the Dumer’s collision procedure Proposition 13.

Proof. This is a corollary of the second-order concentration bounds given in Proposition 31.
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4. Proof of a variant of statistical decoding

4.2.2 Discussion

Note that here we reasoned on the score function, but alternatively we could have reasoned on
the bias of ⟨y,h⟩. Notably, one could reformulate those second-order concentration bounds
to show that as long as (

n
w

)

2k
=

ω (1)

δ
(n)
w (t)2

then, in the noisy codeword y = c + e setting, we have, with probability 1 − o(1) over the
choice of C, that

biash∼U(C⊥⋂Sn
w)

(⟨h, e⟩) = δ(n)w (t) (1 + o(1)).

In a sense our result matches the traditional learning result that if we have access to N
independent realizations of either the uniform distribution over F2 or a Bernoulli distribution

with bias δ
(n)
w (t) then we need around N = ω (1) /δ

(n)
w (t)2 samples to distinguish each case

with probability 1− o(1).
Clearly, if we had used the independence assumptions, see Assumption 2, used in [DT17a]

and that assume that the terms in the sum appearing in the score function are independent,

we would have been able to show with the Chernoff bound that as long as N ⩾ f(n)2/δ
(n)
w (t)2

then we can distinguish with probability 1−e−Ω(f(n)) whereas without the assumption we can
only show with our second order concentration bound that we succeed distinguishing with
probability 1 − O(1/f(n)). This means that we only lose a polynomial factor as long as we
want to distinguish with a poly-bounded advantage, this is sufficient for our use cases here but
will be insufficient in the next chapter where this distinguisher will be invoked an exponential
number of times, this will require, as we show a careful conjecture on the exponential tail
behavior of the score function that we will devise in the next chapter, in Section 5.4.

4.2.3 Asymptotic analysis

We give here the asymptotic counterpart of Theorem 4. The goal here is to prove that given
asymptotic parameters R, τ, ω verifying that h (ω)− R ⩾ −2 κ (ω, τ) there exists an infinite
sequence of closely related non-asymptotic parameters k, t, w that verify the non-asymptotic

constraints of Theorem 4, namely that
(
n
w

)
/2k = (log2 n)/δ

(n)
w (t)2. Indeed, we recall that

κ (ω, τ) is the asymptotic expansion of the bias δ
(n)
w (t) as defined in Corollary 5. The slight

technicality comes from the fact that the asymptotic constraints do not account for polynomial
factors. The whole point being that w should be close to ωn as it directly appears in the
complexity of the procedure computing the dual vectors (which we did not state here). To
simplify the statement we restrict the statement to the case where t is outside the root region

of K
(n)
w , namely when ω < τ⊥

def
= 1

2 −
√
τ(1− τ), this allows for the bias to achieve its

expansion up to polynomial factors at any point, see Corollary 5. This constraint is very
naturally verified by any sound parameters, see Fig. 2.4.

Theorem 5 (Asymptotic counterpart of Theorem 4). There exists g, a function of n ∈ N,
such that g(n) ∈ O((log2 n)/n) and such that for any implicit functions of n, R ∈]0, 1[, τ, ω ∈
]0, 1/2[ that are such that

h (ω)−R ⩾ −2 κ (ω, τ) and ω < τ⊥ − g
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4.2. Analysis when all the dual vectors of a certain weight are computed

then by defining k
def
= ⌊Rn⌋ and t def

= ⌊τn⌋ there exists w an implicit function of n that is such
that w − ωn ∈ O(log2 n) and such that provided that

PC∼UG(n, k)

(
Compute-Dual-Vectors(C) = C⊥

⋂
Snw
)
= 1− o(1)

and taking T
def
= (1/2)(

(
n
w

)
/2k)δ

(n)
w (t), Algorithm 11 solves DPG (n, k, t) with probability 1 −

o(1). We recall that κ (, ) is the asymptotic expansion of the bias given in Corollary 5.

Remark 12. We could state a similar theorem without the constraint that ω < τ⊥−g but then
we would only be able to show that w is in w−ωn ∈ o(n) by using the fact that a Krawtchouk
polynomial achieves its asymptotic expansion in the root region, up to a correction factor of
o(n), as given by Corollary 5.

Proof of Theorem 5. We only have to show that there exists w and implicit function of n such

that
(nw)
2k

= Ω

(
log2 n

δ
(n)
w (t)2

)
and such that w − ωn ∈ O(log2 n). For any w we have that

(
n
w

)

2k
δ(n)w (t)2 =

K
(n)
w (t)2(
n
w

)
2k

=

(
n
w

)
K

(n)
t (w)2

(
n
t

)2
2k

It is readily seen that using Taylor’s theorem along with the following Lemma 10 allows us
to prove our result.

Lemma 10. Let us fix τ ∈ [0, 1/2]. Consider the function which associates ω to

h (ω) + 2 κ̃ (τ, ω) .

For any ω ∈]0, 1/2] such that τ < ω⊥ this function is differentiable and has a positive
derivative. We recall that κ̃ (, ) is the asymptotic expansion of Krawtchouk polynomials given
in Definition 27.

Proof. Let us compute the derivative of this function of ω which we call ϕ. We only have to
show that, for any values of τ ∈ [0, 1/2], we have that ∂ϕ(ω)

∂ω > 0. From Proposition 25 we
have that

∂κ̃ (τ, ω)

∂ω
= log2

(
1− 2τ +

√
(1− 2τ)2 − 4ω(1− ‘ω)

2 (1− ω)

)
.

And we can show that

∂h (ω)

∂ω
= − log2

(
ω

1− ω

)
.

As such

∂ϕ (ω)

∂ω
= log2

(
1− 2τ +

√
(1− 2τ)2 − 4ω(1− ‘ω)

2ω

)
. (4.1)
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Now, by hypothesis we have that τ < ω⊥, namely

τ <
1

2
−
√
ω (1− ω).

Thus

1− 2τ > 2
√
ω (1− ω).

Plugging this in Eq. (4.1) we directly get that

∂ϕ (ω)

∂ω
> log2

(
2
√
ω (1− ω)
2ω

)

> log2

(√
1− ω
ω

)
.

This concludes the proof as ω ⩽ 1/2 we have that 1−ω
ω ⩾ 1.

4.2.4 Proof of the concentration bound

Here we prove our second order-concentration bound on the score function given in Proposi-
tion 31. We recall the proposition here.

Proposition 31 (Second-order concentration bounds on the score function). Let n, k, t, w ∈ N
and let f be a positive function. Let C ∼ UG (n, k) and H

def
= C⊥⋂Snw and define N

def
=(

n
w

)
/2k. We have that

P
(∣∣∣FH (e)−Nδ(n)w (t)

∣∣∣ ⩾ f(n)
√
N
)
⩽

1

f(n)
if e ∈ Snt .

P
(
|FH (y)| ⩾ f(n)

√
N
)
⩽

1

f(n)
if y ∼ U (Fn

2 ) .

Moreover Nδ
(n)
w (t) and 0 are the respective expected values of FH (e) and FH (y) and finally

N is an upper bound on the variance of FH in both cases.

This is done by computing the expected value and the variance of the score function and
applying Bienaymé-Chebyshev inequality.

Lemma 11. Using the notations of Proposition 31 we have that

E (FH (y)) = 0, if y ∼ U (Fn
2 )

E (FH (e)) = N δ(n)w (t) , if e ∈ Snt .

Proof of Lemma 11. We only compute the value of E (FH (e)) here. The two expectations
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are computed in the same way. Using the linearity of expectation we have that

E (FH (e)) =
∑

h∈Sn
w

(−1)⟨e,h⟩E (1h∈H )

=
∑

h∈Sn
w

(−1)⟨e,h⟩P
(
1h∈C⊥⋂Sn

w

)

=
∑

h∈Sn
w

(−1)⟨e,h⟩ 1
2k

=
1

2k
K(n)

w (t)

= Nδ(n)w (t) .

Lemma 12. Using the notations of Proposition 31, we have that:

Var (FH (e)) ⩽ N if e ∈ Snw
Var (FH (y)) ⩽ N if y ∼ U (Fn

2 ) .

Proof. Let us start with the computation of Var (FH (e)). We have that

Var (F (e)) = Var


∑

h∈Sn
w

(−1)⟨e,h⟩ 1h∈H




=
∑

h∈Sn
w

Var
(
(−1)⟨e,h⟩ 1h∈H

)
+ 2

∑

h,g ∈Sn
w

h̸=g

Cov
(
(−1)⟨e,h⟩ 1h∈H , (−1)⟨e,g⟩ 1g∈H ,

)

(4.2)

Let us compute both sums. For the first sum we have that

∑

h∈Sn
w

Var
(
(−1)⟨e,h⟩ 1h∈H

)
=
∑

h∈Sn
w

Var ( 1h∈H ) (4.3)

⩽
∑

h∈Sn
w

E ( 1h∈H ) (4.4)

= E (|H |) (4.5)

= N (4.6)

where the last equality comes from Lemma 9. Let us now compute the second sum. We have
that
∑

h,g ∈Sn
w

h̸=g

Cov
(
(−1)⟨e,h⟩ 1h∈H , (−1)⟨e,g⟩ 1g∈H ,

)
=
∑

h∈Sn
w

(−1)⟨e,h⟩
∑

g∈Sn
w : g ̸=h

(−1)⟨e,g⟩Cov
(
1h∈H , 1g∈H ,

)

From Proposition 5 we get that

Cov
(
1h∈H , 1g∈H ,

)
= P (h ∈H , g ∈H )− P (h ∈H )P (g ∈H )

= 0
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4. Proof of a variant of statistical decoding

Thus this second sum is 0 and we have our result for Var (F (e)).
Let us now compute the case for Var (FH (y)). We have in the same manner that

Var (F (y)) =
∑

h∈Sn
w

Var
(
(−1)⟨y,h⟩ 1h∈H

)
+ 2

∑

h,g ∈Sn
w

h̸=g

Cov
(
(−1)⟨y,h⟩ 1h∈H , (−1)⟨y,g⟩ 1g∈H ,

)

(4.7)

The first sum is equal to
∑

h∈Sn
w

Var
(
(−1)⟨y,h⟩ 1h∈H

)
=
∑

h∈Sn
w

Var
(
(−1)⟨y,h⟩

)
Var ( 1h∈H ) (4.8)

⩽
∑

h∈Sn
w

Var ( 1h∈H ) (4.9)

⩽ N. (4.10)

And the second sum is
∑

h,g ∈Sn
w

h̸=g

Cov
(
(−1)⟨y,h⟩ 1h∈H , (−1)⟨y,g⟩ 1g∈H ,

)

=
∑

h∈Sn
w

∑

g∈Sn
w : g ̸=h

E
(
(−1)⟨y,h+g⟩1h∈H 1g∈H

)
− E

(
(−1)⟨y,h⟩1h∈H

)
E
(
(−1)⟨y,g⟩1g∈H

)

∑

h∈Sn
w

∑

g∈Sn
w : g ̸=h

E
(
(−1)⟨y,h+g⟩

)
E
(
1h∈H 1g∈H

)
− E

(
(−1)⟨y,h⟩

)
E
(
(−1)⟨y,g⟩

)
E (1h∈H )E

(
1g∈H

)

∑

h∈Sn
w

∑

g∈Sn
w : g ̸=h

E
(
(−1)⟨y,h+g⟩

)
E
(
1h∈H 1g∈H

)
− E

(
(−1)⟨y,h⟩

)
E
(
(−1)⟨y,g⟩

)
E (1h∈H )E

(
1g∈H

)

= 0 (4.11)

where the last equality comes from the fact that E
(
(−1)⟨y,h+g⟩) = 0 and E

(
(−1)⟨y,h⟩

)
= 0.

This concludes the proof.

4.3 About the procedure used to compute the sparse dual
vectors

Let us now make a slightly more general discussion on the possible output distributions of
Compute-Dual-Vectors. First, notice that all the current ISD decoders, or some slight
variation of them, can readily be used to produce dual vectors of small weight w. If the
decoder takes a triplet C,y, t to decode y onto C at distance t we can give it instead C⊥,0, w.
Let us first break their output distribution into a few categories that we list below.

4.3.1 Computing the whole set of dual vectors of a certain weight

In this thesis, the analysis of our dual attacks and our complexity claims will be made in most
cases when the procedure computing the dual vectors outputs the set of all dual vectors of a
certain weight w with good probability. This is an arbitrary choice. This is essentially the
case of the simple Dumer subroutine, see Proposition 13 and the more advanced BJMMM
subroutine, see Proposition 14.
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4.3. About the procedure used to compute the sparse dual vectors

4.3.2 Computing a uniform looking subset of the dual vectors of a certain
weight and the sublinear regime

A subset of size N of C⊥⋂Snw which is somewhat nicely distributed i.e. we could roughly
model the distribution of H as if it was taken uniformly at random from all subsets of size N
of C⊥⋂Snw. Some recent sieving techniques [GJN24, DEEK24] can be used to compute some
uniform looking smaller proportion of the dual vectors of weight w. Also, a slight adaptation
of the Prange ISD decoder could be used for this case, it is particularly useful when the error is
sublinear in the error weight as this is the only technique known right now which can compute
dual vectors of weight < n/2 in sub exponential time could be used.

Algorithm 1 (Adapted Prange Decoder). We call the Adapted Prange Decoder the algorithm
which, given a code C of length n, a dimension k, a weight w and a target N runs the following
procedure a number

n2 N

(
k
w

)

2k

of time: choose at random a subset I of J1, nK of size n − k and a random element i of I
and compute, if it exists, the unique h ∈ C⊥ such that hI \{i} = 0 and hi = 1. Store h in a
set if |h| = w. Stop if we have found a total of N distinct dual vectors of weight w.

Model 2. We make the model that given as input C, N,w Algorithm 1 returns a subset of
size N (it is exists) that was chosen uniformly at random among subset of size N of C⊥⋂Snw.

In particular, we can show the following theorem giving the performance of the dual
distinguisher to distinguish when the error weight is sublinear in the code length and when
this Prange routine is used to compute the dual vectors.

Theorem 6 (Complexity of the distinguisher in the sublinear regime). Let R ∈]0, 1[ be a
constant and let t be an implicit function of n ∈ N such that t = o(n). There exists N and w
and two implicit functions of n that are such that

N ∈ Õ
(
2−t log2(1−R)(1+o(1))

)
and w ∈ nR/2 +O(log2 n)

and such we have the following. Using Algorithm 1 to compute dual vectors in Algorithm 11

and supposing that Model 2 is valid, Algorithm 11 with T
def
= (1/2)Nδ

(n)
w (t) solves DPG (n, ⌊Rn⌋ , t)

with probability 1− o(1) in time

Õ
(
2−2 t log2(1−R)(1+o(1))

)
.

We do not show this theorem completely but give the main ingredients for the proof. Basi-
cally we can deduce from our second-order concentration bounds that as long as N ⩾ n

δ
(n)
w (t)2

and N < 1
2
(nw)
2k

then under Model 2 we can distinguish with probability 1 − o(1). The

added condition that N < 1
2
(nw)
2k

only comes from the fact that we need that there ex-
ists at least N dual vectors of weight w with overwhelming probability. This last condi-
tion is readily verified by the N in the theorem because R is constant and t = o(n). We

conclude the proof with Proposition 27 which gives that δ
(n)
w (t) = 2t log2(1−2ω)(1+o(1))n =

2t log2(1−R+O(log2 n/n))(1+o(1))n = 2t log2(1−R)(1+o(1))n where the last equality comes from Tay-
lor’s theorem.
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4. Proof of a variant of statistical decoding

4.3.3 More involved distributions

Here we discuss technique that can be used to essentially produce the set of all vectors of
C⊥⋂V where V is some fixed and known subset of Snw. Essentially this can be done with an
iteration of a full-fledged ISD, namely an iteration of the Dumer ISD framework of Algorithm 2
or an iteration of Algorithm 5.

For example one iteration of [MO15, BM17, BM18] naturally produces dual vectors of
weight w but they will be of distinct and fixed known weights w(i) on some subpart P(i) of
the support. In that case, and with y = c+ e we would have that:

E (FH (y)) = N
∏

i

δ
(|P(i)|)
w(i) (|eP(i) |) .

Note that we could even use a slightly modified iteration of the ISD [Dum91, MMT11,
BJMM12]. An iteration of those ISD’s produces dual vectors which are of small Hamming
weight on some part I of the support and which are uniformly distributed on some other
part R of the support (namely on the extended information part and the redundant part
respectively). As such, considering h such a dual vector, we have, as soon as the error is
non-null on the R part that ⟨e,h⟩ is not biased, which is destructive for our algorithm. We
can remedy to this problem by filtering the dual vectors in a way that we keep only those
which are of fixed weight, say p, on the part R. But, we can make ⟨e,h⟩ biased toward 0
even with a polynomial filtering, that is, choosing wisely p = |R| /2−o(n) close to the typical
relative weight 1/2 is sufficient to obtain a usable bias, even if the weight of the error on R

is say linear in |R|. It is clear that in these regimes, |eR | lies inside the root region of K
(n)
w

and from Corollary 5 we get that there exists some point o(n) close to |R| /2 such that the
bias related to the part R achieves its asymptotic expansion, namely in that case we have

δ(|R|)
p (|eR |) =

2− o(n)

√( |R|
|eR|
) .

4.4 Turning this distinguisher into a decoder

We build here a proven dual decoder using standard reductions from decoding to distinguish-
ing (see for example [Deb23]). For example, we can show that

Proposition 32 (Reducing decoding (DPG (n, k, t)) to distinguishing (DiPG (n, k, t))). Let
n, k, t ∈ N and let f be a function of n. Given an algorithm which solves DiPG (n, k, t) with
an advantage of 1− 1/ (n f(n)) then there exists an algorithm which solves DPG (n, k, t) with
probability 1−O(1/f(n)).

With this reduction we can build the following decoder:

Algorithm 2. We call Variant-Statistical-Decoding(C,y, t) the procedure which given
a code C, a noisy codeword y and a decoding distance t along with some parameter w and
applies the reduction of Proposition 32 using Algorithm 11 for the distinguisher.

whose performance directly follows from this last proposition Proposition 32 along with
the correctness of our dual distinguisher given in Theorem 4. Let us now explain how the
reduction in Proposition 32 is obtained. Say we are given a code C and some noisy codeword
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4.5. A simplification of the analysis of [DT17a]

y obtained by DPG (n, k, t). In this problem, the code is in fact given through its generator
matrix G ∈ Fk×n

2 which is taken uniformly at random in Fk×n
2 and y is some c + e where

c = mG for some m ∈ Fk
2 and e ∈ Snt . Our goal will be to recover each position of the

message m. To recover the i’th position of m we change the generator matrix G into say G′

by adding a vector x which was uniformly and independently taken from Fn
2 to its i’th line

and notice that G′ is uniformly distributed in Fk×n
2 , that it is independent of y and that as

such

• If mi = 0 then (G′, y) is distributed according to the distribution D0 in DiPG (n, k, t).
This is due to the fact that c = mG = mG′ thus y is a noisy codeword of the code
generated by G′

• If mi = 1 then (G′, y) is distributed according to the distribution D1 in DiPG (n, k, t).
This is due to the fact that c = mG = mG′ + x where we conclude with the fact that
G′ and x are independent.

This decoder guesses m and returns the error mG + y if it is of weight t, else it returns
fails. The proof of Proposition 32 follows from the union bound as we can upper bound the
probability of failing to recover mi correctly by some O(1/f(n)).

4.5 A simplification of the analysis of [DT17a]

As a side note, we devise a simplification of [DT17a] analysis. As explained in Section 2.2.3.3
at one point in their analysis [DT17a, Lemma 2,3,4] they estimate the asymptotic expansion

of some sum of bias, namely
(
δ
(n−1)
w−1 (t) + δ

(n−1)
w−1 (t− 1)

)2
by adding the asymptotic expansion

of K
(n−1)
w−1 known from [IS98, Theorem 3.1] and compute the result. Here we note that this

sum of bias can be expressed directly as another bias allowing us to use directly the known
expansion of the bias (i.e. Corollary 5).

Proposition 33 (Differences of expected value).

δ
(n−1)
w−1 (t) + δ

(n−1)
w−1 (t− 1) = Θ (1) δ

(n−2)
w−1 (t− 1)

Proof. Recall that

δ(n)w (t) =
K

(n)
w (t)(
n
w

) .

By using the recurrence relations that we gave in Proposition 20 we have that

K
(n−1)
w−1 (t− 1) = K

(n−2)
w−1 (t− 1) +K

(n−2)
w−2 (t− 1) .K

(n−1)
w−1 (t) = K

(n−2)
w−1 (t− 1)−K(n−2)

w−2 (t− 1) .

Notice that (
n− 1

w − 1

)
=
n− 1

n− w

(
n− 2

w − 1

)
.
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4. Proof of a variant of statistical decoding

As such

δ
(n−1)
w−1 (t) + δ

(n−1)
w−1 (t− 1) =

2K
(n−2)
w−1 (t− 1)(

n−1
w−1

)

= 2
n− w
n− 1

K
(n−2)
w−1 (t− 1)(

n−2
w−1

)

= Θ(1) δ
(n−2)
w−1 (t− 1) .
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Chapter 5

Dual Attack 2.0 : Reducing
Decoding to LPN
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Figure 5.1: Asymptotic complexity exponent, relative to the code length n of some generic
decoders when decoding a random code of rate R at the Gilbert-Varshamov distance. Our
corrected analysis of [BM18] is given in Section 2.1.3.4. The statistical decoding curve is the
lower bound on [Jab01] given by [DT17a, Figure 7, Optimal Statistical decoding] by supposing
that each dual vector can be computed in polynomial time.

Summary

In this chapter we devise and analyze a new dual attack that we call RLPN (Reducing Decod-
ing to LPN). Our algorithm revisits statistical decoding and makes dramatic improvements
to the original algorithm. We show that it significantly asymptotically outperforms all known
generic decoders when decoding codes of small constant rates smaller than 0.3 at the Gilbert-
Varshamov distance. Our algorithm introduces a splitting strategy that was originally sug-
gested but not exploited in [DT17a]: we use the fact that we can slightly modify statistical
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decoding so that each dual vector now yields an LPN sample where the secret is some part of
the error vector and where the noise of the sample involves only some part of the error and
the dual vector. Our algorithm computes many such dual vectors and solves the resulting
LPN problem with an FFT as used in [LF06]. We show experimentally that, to analyze our
algorithm, we cannot make the simplistic model that our LPN samples are distributed as true
LPN samples. Our analysis relies on the second-order concentration bound we devised in the
previous chapter and on some exponential strengthening of these bounds. We are unable to
prove the latter but provide a conjecture that we verify experimentally. This allows us to con-
clude that the performance of our algorithm is not affected by this distribution discrepancy.
This chapter contains a rewritten version of [CDMT22] and [MT23].
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5.1. Introduction

5.1 Introduction

5.1.1 Reducing Decoding to LPN

Say we are given a decoding problem y = c + e where c ∈ C and e ∈ Snt . We notice that if
we split the support J1, nK in two fixed parts P and N , then a dual vector h ∈ C⊥ yields

⟨y,h⟩ = ⟨eP ,hP⟩+ ⟨eN ,hN ⟩ ,

and, we notice that if h is of low weight on N this h directly gives us access to the following
LPN sample:

(a, ⟨a, s⟩+ e) where





a = hP

s = eP

e = ⟨eN ,hN ⟩
(5.1)

where the secret s is given by eP and the noise e is given by ⟨eN ,hN ⟩ more biased toward
0 as eN and hN are of lower weights. As such, given many h of low weight say w on N
we get many such LPN samples. We call our new algorithm leveraging this reduction RLPN
(Reducing Decoding to LPN).

5.1.2 Rationale

In essence, statistical decoding is this strategy but with |P| = 1, our approach is to take |P|
bigger. Intuitively this allows us to naturally increase the bias of the noise ⟨eN ,hN ⟩ and
hence decrease the number of needed dual vectors to recover eP . Let us be more precise,
define the bias of the noise ε = biash (⟨eN ,hN ⟩), making some simplifications, one could
expect that N ≈ s/ε2 samples will be needed in order to recover the secret eP (this would be
true by using Shannon’s second theorem [RU08, Theorem 4.68, p. 203] and supposing that
our LPN samples are true LPN samples, see Fact 15). We illustrate the gain of taking P
bigger in Fig. 5.2b. For illustration purpose, we suppose that the dual vectors of C are taken
uniformly of weight w on N and we make the approximation that we can forget about the
code structure to get that

ε ≈ bias
h′

N ∼U
(
S|N |
w

) (〈eN ,h′
N

〉)
= δ(|N |)

w (|eN |) .

102



5. Dual Attack 2.0 : Reducing Decoding to LPN

Needed dual vectors: (1− σ)h (ω)− (R− σ)
Available dual vectors: −2 (1− σ)κ (ω, τ)
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Figure 5.2: Asymptotic exponent, relative to the code length n, representing the number of
available dual vectors against the number of needed dual vectors to recover the error as a

function of the relative weight ω
def
= |hN | / |N | of the dual vectors on N . Here we are in

the setting where we decode a code of rate R = 1/2 at the Gilbert-Varshamov distance and

where we suppose that |eN | is of typical weight, namely τ
def
= |eN | / |N | is equal to τGV (R).

We denote by σ
def
= |P| /n as such |N | /n = 1− σ.

Remark 13. Notice that increasing |P| gives two benefits: at a fixed relative weight it in-
creases the bias and the number of dual vectors.

Of course, those gains in the bias come with the negative side effect that we now have
to solve a problem of dimension |P|. This is more complicated than in statistical decoding
where |P| = 1 and where the problem was solved with majority voting. However, this
splitting strategy is beneficial because we can now balance the cost of recovering eP with the
number N of needed dual vectors. For example the FFT technique we use recovers the secret
run in time Õ

(
2|P| +N

)
. In statistical decoding, |P| = 1 and N is exponential as mentioned

above, so we are deep in a regime where we can afford a larger P, hence diminishing the
number of needed dual vectors N and hence diminishing the overall costs.

5.1.3 The RLPN algorithm

Basically the main step of our algorithm consists in choosing at random two complemen-
tary subsets P and N of J1, nK of size say s and n − s respectively and computing many
(an exponential number) dual vectors of low weight w on N , each giving the LPN samples
(hP , ⟨y,h⟩). To solve our related LPN problem, we compute a score function FL which en-
codes for each x, how biased is ⟨y,h⟩ − ⟨x,hP⟩ as a sum

∑
h∈H = (−1)⟨y,h⟩−⟨x,hP⟩, namely

we have

Definition 32 (Score function of an LPN problem). Let L be a list of elements of the form
(a, b) with a ∈ Fs

2 and b ∈ {0, 1}. We define for x ∈ Fs
2 the score function related to the LPN

problem given by L as

FL (x) =
∑

(a,b)∈L

(−1)b−⟨a,x⟩.
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This score function is encodes the distance between the code D def
= {cx def

= (⟨x,hP⟩)h∈H :

x ∈ Fs
2 } generated by the LPN samples and the received noisy codeword b

def
= (⟨y,h⟩)h∈H =

ceP + (⟨eN ,hN ⟩)h∈H . More precisely we have that

FL (x) = |H | − |b− cx| .

In other words maximizing the LPN score function is really finding the closest codeword of
D to (⟨y,h⟩)h∈H . But, as we will see, even if the number of LPN samples is of the order
N ≈ 1/ε2, because of some linear structure in our LPN samples we are not able to directly
conclude that the secret eP is the maximum of the LPN score function. We will have to
account for a few number of false candidates x ̸= eP whose score can be as big as the score
associated to the secret eP . Essentially, we will keep only those candidates x whose associated
score is sufficiently big. Testing a candidate for eP and recovering the rest of the error eN

is done by solving yet another smaller decoding problem.
Because the bias ε increases as the weight of eN decreases we will also add a slight bet

that
|eN | = u

for a certain parameter u and iterate our algorithm until this bet is valid, the idea is that the
loss in the number of iteration should be outweighed by the gain in the bias.

5.1.4 Analysis

We analyze of our algorithm in the case where all the dual vectors of weight w on N are
produced: in that case we can show that the bias of the noise of the LPN samples can be

tightly estimated by ε ≈ δ(n−s)
w (u) which is essentially the bias of ⟨eN ,hN ⟩ when forgetting

about the code structure (and supposing that the bet is valid).
The technical difficulty of the analysis lies in the fact that, as we will show, our obtained

LPN samples do not behave like true LPN samples hence we cannot use the usual information
theoretic tools to show for example that we could recover the secret eP with overwhelming
probability provided that the number of LPN sample is of order N ≈ 1/ε2. In fact, we
show that, contrary to the true LPN setting there can exist in our algorithm some candidates
x ̸= eP , which we call false candidates, and which have an unusually high score and are
thus mistaken for the secret. As the complexity of testing a candidate directly appears in
the complexity we must estimate their number precisely. The conclusion of our analysis is
that taking N ≈ 1/ε2 is basically completely sufficient so that false candidates are not a
problem: their number can be poly-bounded, which means that their potential presence does
not change the overall complexity by more than a polynomial factor.

We give here the main steps behind our analysis. We notice that in fact analyzing our
algorithm essentially boils down to analyzing some (stronger) variant of our previously intro-
duced dual distinguisher. Indeed we can use some linearity relation between the coordinates
of the dual vectors h’s to rewrite the LPN samples as

⟨y,h⟩ − ⟨x,hP⟩ = ⟨f(x),hN ⟩

for a certain fixed (but unknown) affine function f where we prove that f(x) is uniformly
random when x ̸= eP and f(eP) = eN . Clearly hN ∈

(
C⊥
)
N

where it is readily seen that(
C⊥
)
N

is generally an [n−s, n−k] linear code, thus hN is in fact a dual vector of low weight
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w of an [n − s, k − s] linear code
((
C⊥
)
N

)⊥
= CN which is simply the code C shortened in

|N | positions. Clearly, using the invariance
〈
f(x) + cN ,hN

〉
for cN ∈ CN we see that this

term is biased toward zero as soon as f(x) is sufficiently close to CN . This rewritting also
show that our LPN score function can rewritten as a score function as defined in the previous
chapter, namely

FL (x) =
∑

hN ∈Sn−s
w

⋂
(CN )

⊥

(−1)⟨f(x),hN ⟩.

Contrary to our previously introduced dual distinguisher, we must now distinguish the secret
eP (associated to f(eP) = eN of low weight) among an exponential number of candidates x
(associated to f(x) uniformly random). Interestingly, the second-order concentration bounds
devised in the previous chapter allows us to prove that as long as the number of dual vectors
of weight w on N is of the order

N = poly (n) /δ(n−s)
w (u)2

then we can, using the value of FL (x), distinguish an x ̸= eP from the secret eP with
polynomial probability (our intuition is by the way that taking N smaller would lead to our
reduction being completely useless: we would have no usable advantage at all).

However, as we have an exponential number of x to compare against eP , these bounds
will be completely insufficient to say anything useful and some exponential strengthening will
be needed. We will not be able to prove directly the needed exponential strengthening but
we make the natural conjecture that the only case where some x is mistaken for eP is when
f(x) is unusually close to CN , namely when f(x) is at distance less than f (eP) = eN from
CN . We give extremely strong experimental evidences that this conjecture is true by devising
a key duality formula, see Proposition 34, for the score function: it shoes that FL (x) deeply
relates to the weight enumerator of some coset code of CN , namely CN + f(x). By making a
simple model on the distribution of the weight enumerator we are able to prove our conjecture
while showing experimentally that making this model does not change the distribution of the
score function.

Proposition 34 (Duality formula for the score function). Let n, k, w and let C ∈ C [n, k] and
let y ∈ Fn

2 . We have that

∑

h∈C⊥⋂Sn
w

(−1)⟨y,h⟩ = 1

2k

n∑

i=0

Ni (C + y)K(n)
w (i) (5.2)

where we recall that the weight enumerator is given by Ni (C + y)
def
= |C⋂Sni |.

Related work

Our dual attack can be seen as the coding theoretic analogue of the dual attacks in lattice-
based cryptography. Namely, the first dual attack in lattice [AR04] could be seen as the
lattice equivalent to statistical decoding and was also completely uncompetitive against the
lattices based primal attacks. It has then gained a series of crucial improvements [Alb17,
EJK20, GJ21, MAT22, CST22], one which coming from a similar splitting strategy. All the
analysis of these lattice-based dual attacks rely on some independence assumptions.
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Initially, we proposed and published in [CDMT22] a first version of our RLPN decoder
were we assumed in the analysis some variant of these independence assumptions [CDMT22,
Assumption 3.6], namely that the obtained LPN samples behaved like true LPN samples.
At that time we noticed by running some experimentation that this model was not always
accurate [CDMT22, Figure 3.1], but we conjectured there that the discrepancy between this
ideal model and experiments does not impact our asymptotic analysis of the algorithm by
more than a polynomial factor.

Then, in lattice-based cryptography, the dual attacks were strongly questioned by [DP23b]
who showed that these independence assumptions were in contradiction with some theorems
in certain regimes or with well-tested heuristics in some other regimes. The paper however
did not give a way to analyze them, and it was left as an open question if these lattice-based
dual attacks really could work as expected.

In turn, we proved in [MT23] that the LPN model we made in [CDMT22] to analyze
our decoder could not always hold and, it was shown that the number of false candidates in
our RLPN decoder given in [CDMT22] was in fact exponentially large for some parameters,
whereas there should be none if the assumptions held. However, we gave at the same time
an approach for analyzing our attack with the help of an accurate model. In particular, we
also showed that we had to slightly modify the original RLPN decoder to be able to achieve
to originally claimed the complexity exponent given in [CDMT22]. The scientific part of our
work in [MT23] was made independently of [DP23b].

5.2 The RLPN algorithm

Recall that we want to decode at distance t a given noisy codeword y = c+ e where e ∈ Snt
is an error vector of weight t and c is a codeword of a given linear code C of length n.

5.2.1 Outline of the algorithm

The main step of our algorithm consists by first choosing at random two complementary
subsets P and N of J1, nK of a certain size say s and n− s and then proceed by calling the
three following main procedures:

1. Compute-LPN-Sample. It computes many dual vectors h ∈ C⊥ of low weight w on N
and store and returns the list, say L, composed of the LPN samples (a, b) = (hP , ⟨y,h⟩)
with secret eP , as described in Eq. (5.1).

2. LPN-Solver. It takes as input the list of LPN samples and outputs a (small) set of
candidates x for the secret of the LPN problem eP .

3. Recover-Full-error. It takes as input the set of candidates, if eP is in the set of
candidate we expect that this procedure returns the full error e or it fails.

Moreover as we explained in the introduction, we in fact make some additional bet that the
weight of the error on the part N , namely |eN | is of unusually low weight, say u: this allows
to drastically reduce the number of needed LPN samples in order to solve our LPN problem
(i.e. recover eP with good probability). The rationale is that when this bet is invalid simply
that eP will not be found in the set of candidate but as soon as it is eP will appear in it.
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5. Dual Attack 2.0 : Reducing Decoding to LPN

As such we iterate this main step a certain number Niter of time in order for our bet to be
verified at least once. Overall this main structure is described in the following Algorithm 12.

Algorithm 12 The Reducing Decoding to LPN (RLPN) algorithm

Name: RLPN
Input: C ∈ C [n, k] , y ∈ Fn

2 , t
Parameter: s, w, u and T,Niter

1: while i = 1 . . . Niter do

2: P
$←{P ⊂ J1, nK : |P| = s} ▷ Hope that eN = u

3: N ← J1, nK \P
4: L ← Create-LPN-Samples(C, N ; w) ▷ L contains an expected number of N LPN

samples of the form (a, b) where a ∈ Fs
2 and b ∈ {0, 1}

5: S ← RLPN-LPN-Solver(L ; t− u, T ) ▷ Returns a set of candidates for the secret of
the LPN problem given by L, t−u is the bet of weight of the secret and T is a treshold

6: e← RLPN-Recover-full-error(S, P, N , y, u) ▷ Return either ⊥ if eP /∈ S but
returns e if eP ∈ S and |eN | = u

7: if e ̸= ⊥ then
8: return e

Let us now proceed describing in more details each of the individual 3 procedures.

5.2.2 Creating the LPN samples

Our main goal here is to compute a set H of dual vectors of C which are of small Hamming
weight w on a subpart N : each of these dual vectors h ∈H yields an LPN sample (hP , ⟨y,h⟩)
which we store and return as a list L. We note that computing the dual vectors of this shape
reduces to finding dual vectors of weight w in a code of smaller rate and length, namely CN ,
which is, extremely beneficial as it makes computing dual vectors much easier compared to
statistical decoding say. Indeed, note first that as we are only interested on the weight of hN ,
provided that N is an information set of the dual (which will be the case with overwhelming
probability), we can only focus on this part. Namely, we have the following.

Lemma 13. Let C be a linear code of length n and let P and N be two complementary subsets
of J1, nK of size s and n− s respectively. Provided that N is an (extended) information set

of C⊥, the matrix R = Lift
(
C⊥, N

)
in Fs×(n−s)

2 is such that

hP = hN R⊺, ∀h ∈ C⊥.

Conversely, every hN ∈
(
C⊥
)
N

can be uniquely lifted to a dual vector h ∈ C⊥ by defining
hP = hN R⊺.

Now, notice now that the space in which hN lives can be rewritten as the dual of the
code C shortened on N , namely we recall.

Lemma 1. (Relation between shortening and puncturing [HP03, Theorem 1.5.7]) Let C be
a linear code of length n and let N ⊂ J1, nK be a set. We have that

CN =
((
C⊥
)

N

)⊥
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5.2. The RLPN algorithm

To compare with the ISD’s, remember that they essentially leverage technique which are
efficient to decode in the high rate regime by reducing decoding to decoding in a code of
higher rate by the way of a bet on the error weight on some information set. We leverage
exactly the dual of this phenomenon by using the fact that these techniques are efficient to
compute low weight dual vectors in the low rate regime.

5.2.2.1 The procedure

Using this remark, we can build our procedure Create-LPN-samples from any procedure
computing sparse dual vectors, say Compute-Short-Dual-Vectors. We start by produc-
ing a subset HN of dual vectors of CN by calling Compute-Dual-Vectors(CN ;w) which

outputs a subset of
(
CN
)⊥⋂Sn−s

w . We then uniquely lift each of these vectors hN ∈ HN

into dual vectors h ∈ C⊥ of weight w on N with the Lift
(
C⊥, N , hN

)
procedure described

in Definition 14. We recall that this lifting procedure can be obtained by making a partial
Gaussian elimination on the position given by P of the given generator matrix G of the code
C. Say for the sake of the discussion that P = J1, sK and N = Js+1, nK, we would thus put
G in the form

G =

(
Is R

0k−s×s G′

)
(5.3)

where R ∈ Fs×(n−s)
2 and G′ ∈ F(k−s)×(n−s)

2 is a generator matrix of CN . Then, lifting to

h ∈ C⊥ from hN ∈
(
CN
)⊥

is made by computing hP
def
= hN R⊺ as we must have that

Gh⊺ = 0. This leads to Algorithm 13 whose complexity is, up to a polynomial factor the
complexity of the call to Compute-Short-Dual-Vectors.

Algorithm 13 Computing the LPN samples

Name: Create-LPN-Samples
Input: C ∈ C [n, k] , y, N
Require: A procedure Compute-Dual-Vectors(D;w) which given a linear code D out-

puts a subset of the dual vectors of D of weight w.
Parameter: w
1: If dim (CP) = s continue else i← i+ 1 and go to Line 2 of Algorithm 12 ▷ Check

that N is an information set of C⊥. Continue with overwhelming probability.
2: HN ← Compute-Dual-Vectors(CN ; w) ▷ Returns a subset of dual vectors of CN

which are of weight w
3: H ← {Lift(C⊥,N , hN ) for hN ∈HN } ▷ Lift those dual vectors hN ∈

(
CN
)⊥

to
make them dual vectors h of C of low weight w on N

4: L ← [(hP , ⟨y,h⟩) for h ∈H ]
5: return L

We refer to Section 4.3 for an overview of the techniques that can be used to compute
low-weight dual vectors and that are tailored to the constant-rate regime we focus on.

5.2.3 Solving the LPN problem

In essence, we enumerate all the possible solutions x for eP and keep those candidates x for
eP that are sufficiently good, namely such that ⟨y,h⟩ − ⟨x,hP⟩ is sufficiently biased toward
0, namely we compute the score function for all x ∈ Fs

2 defined as follows.
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Definition 33 (LPN score function). We define the LPN score function as

FL (x) =
∑

h∈H

(−1)⟨y,h⟩−⟨x,hP⟩

Here, we use the FFT trick, see Section 3.2.3, to compute this score function for all x ∈ Fs
2

in time Õ(max (2s, |H |)). This allows an exponential gain compared to the cost of the naive
computation which is Õ(2s × |H |) where 2s and |H | are both exponential. In fact the naive
computation could be greatly diminished by using the fact that the secret eP ∈ Fs

2 is known
to be of low-weight, so we don’t have to exhaust the whole space Fs

2. But we do not consider
this variant here and rather delegate leveraging the sparseness of eP to the next section.

Finally, we decide that x is a candidate for the solution eP if its associated score function
value is superior to a well-chosen threshold T . We store those candidates in a list. Crucially
here, we only keep those candidates x that are how correct weight t− u. Indeed, recalling in
our main loop we made the bet that |eN | = u, so in that case we know that |eP | = t − u.
This is important as, as we will see in the analysis later, this filtering allows to exponentially
diminish the number of candidates and make the algorithm work.

Definition 34 (Set of candidates). We define the set of candidates S as

S def
= {x ∈ Sst−u : FL (x) > T}.

Algorithm 14 The LPN solver

Name: RLPN-LPN-Solver
Input: L ▷ L is a list of LPN samples of the form (a, b) where b = ⟨a, s⟩+ e and s ∈ Fs

2

Parameter: v, T ▷ v is the weight of the secret of the LPN problem given by L and T is the
threshold from which we keep the candidates.

1: FL ← FFT-LPN-Solver(L) ▷ The procedure is defined in Algorithm 10 and outputs
2: S ← {x ∈ Ssv : FL (x) ⩾ T}
3: return S

Proposition 35 (Complexity of LPN-Solver). The time and memory complexity of Algo-
rithm 19 is given by

poly (n)max (2s, |L|) .

5.2.4 Recovering the rest of the error

Here we are given a small subset S of candidates x for the secret eP and we want to test them
for the secret. Basically we check if x = eP by solving a (smaller) decoding problem onto CN

at distance |eN | = u. It returns fail if x ̸= e and returns the rest of the error, eN , if x = eP .
This procedure will have an exponential time complexity, but the rationale is that it should
not dominate the complexity of an iteration of RLPN. Recall that y = c + e where c ∈ C
and e ∈ Snt . We leverage the fact that from the knowledge of eP ∈ Sst−u we can construct
the noisy codeword y′ = cN + eN for some cN ∈ CN , we recover eN by calling a decoder,
say Decoder(CN , y′, u) which decodes y′ at distance u and returns ⊥ if the problem has
no solutions.
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Indeed it is readily seen from Eq. (5.3) that c can be rewritten, for some cN ∈ CN as

c = (cP || cPR) + (0 || cN )

where we recall that R
def
= Lift

(
C⊥, N

)
. Using this rewriting we have that:

y = (cP + eP || cPR) + (0 || cN + eP),

cP = yP − eP .

As such, if x is our guess for eP , we have by constructing

y′ = yN − (yP − x)R

that y′ = cN + eN in the case x = eP . If this problem has no solution we have of course a
false candidate for eP . This is summed up in Algorithm 21.

Algorithm 15 Recovering the rest of the error

Name: RLPN-Recover-full-error
Input: C, P, N , S ▷ S is a list of candidates x ∈ Sst−u for eP

Parameter: u
1: for x ∈ S do
2: R← Lift

(
C⊥, N

)

3: y′ ← yN − (yP − x)R
4: z← Sub-Decoder(CN , y′, u)
5: if z ̸= ⊥ then
6: Construct e such that eP = x and eN = z
7: return e
8: return ⊥

We have several choices here depending on the number of candidates we will have to test,
if this number is poly bounded we can use some very simple but inefficient decoder but we
have to be careful about the decoder we choose if this number was to grow. It turns out
that in this thesis, all our cases of interests in RLPN will lead to a poly bounded number of
false candidates. In this case it is way simpler and sufficient to use for sub-Decoder our
proved variant of statistical decoding, namely Algorithm 2. Indeed, it will defacto ensures
that this last step does not add more than a polynomial factor to the overall complexity of
the RLPN decoder. This comes from the fact that we can directly reuse the dual vectors
computed in the Compute-LPN-samples procedure and which we stored in HN and plug
them in this variant of statistical decoding. The parameters constraint we have on RLPN (i.e.
that N ≈ 1/ε2) are then sufficient to prove that this last decoding step succeeds with high
probability.

5.2.5 Complexity of the algorithm

The average complexity of our algorithm is straightforwardly given by the next proposition.
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Proposition 36. Let n, k, t, s, T, Niter ∈ N be some parameters. The expected time and
memory complexity of Algorithm 12 when given an instance of DPG (n, k, t) are given by

Time = poly (n)Niter [2
s + Teq + (1 + S) Tsubdec]

Memory = poly (n) [2s +Meq +Msubdec]

where S is the expected number of false candidates, namely

S
def
= E (|S \ {eP}|)

and where Teq, Meq are the time and memory complexity of Compute-Short-Dual-Vector
and Tsubdec, Msubdec are the time and memory complexity of Sub-Decoder.

Because the complexity Tsubdec of the sub decoder will be exponential in say the distance
u it is crucial to correctly estimate the expected number of false candidates. Let us first give
an insight onto why this requires some technical arguments.

5.3 Analysis

We analyze our algorithm in the case where essentially all the dual vectors of weight w on
N are produced. We are only interested in the behavior of our algorithm when the bet
on the error is valid, namely when eN = u. Our goal here is to give the conditions on the
parameters to recover the secret eP of our LPN samples and to give a bound on the number of
false candidates. We use in this section the following notation that captures the distributions
and quantities encountered in a good iteration of RLPN.

Notation 3. n, k, t, w, s, u, T ∈ N are some parameters. P and N are two fixed comple-
mentary subsets of J1, nK of size s and n− s respectively. C is a linear code of length n such
that dim (CP) = s and y = c+ e where c ∈ C and e ∈ Snt is fixed such that

|eN | = u.

Define the LPN score function as

FL (x)
def
=
∑

h∈H

(−1)⟨y,h⟩−⟨x,hP⟩, where H
def
= {h ∈ C⊥ : |hN | = w}

and define the set of candidates as

S def
= {x ∈ Sst−u : FL (x) > T}.

Whenever probabilities are involved the code C is the only random quantity and is taken
according to UG (n, k) conditioned on the event that dim (CP) = s.

Lemma 14 (Main quantities involved in the analysis). The expected number of LPN samples
is

E (|H |) = N where N
def
=

(
n−s
w

)

2k−s
.

The expected value of the score function on the secret is

E
(
FL (eP)

)
= Nδ(n−s)

w (u) .
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Because FL (eP) =
∑

h∈H (−1)⟨eN ,hN ⟩ this lemma shows roughly that the expected bias

of the error ⟨eN ,hN ⟩ of our LPN samples ⟨y,h⟩ = ⟨eP ,hP⟩+⟨eN ,hN ⟩ is δ(n−s)
w (u). This is

basically the bias if we had ignored the code structure. If the LPN sample followed a true LPN

distribution we would expect that it is sufficient that N ⩾ s/δ
(n−s)
w (u)2 to be able to recover

the secret eP with overwhelming probability. This would be done by setting the threshold

T
def
= 1

2Nδ
(n−s)
w (u) to filter out all other candidates. However, modeling our LPN samples as

true LPN samples is not always accurate as shown by Fig. 5.3.

0 2,000 4,000 6,000 8,000 10,000
2−10

20

210

220

Threshold T

LPN modeling
Experimentation

Figure 5.3: Experimental average number of false candidates∣∣{x ∈ Fs
2 : x ̸= eP and FL (x) > T}

∣∣ against its LPN modeled counterpart. n = 100, k =
30, s = 20, w = 6.

Remark 14. We give more details about this figure and the LPN model in Section 5.6.2. In
particular, we give a description of the first version of RLPN that was published in [CDMT22]
and that was analyzed using this LPN modeling. The key thing to notice is that in this figure
we plot

∣∣{x ∈ Fs
2 : x ̸= eP and FL (x) > T}

∣∣ whereas in our algorithm the candidates in S
are filtered by weight.

However, using a conjecture, that we state later, we show that we can essentially distin-
guish eP from the other candidates at the cost of a slight polynomial strengthening on the

condition that N ⩾ 1/δ
(n−s)
w (u)2. Our statement is given as follows.

Proposition 37 (Main proposition of this section). For any k, t, s, w, u ∈ N implicit functions
of n ∈ N such that

N ∈ ω
(
n6
)

δ
(n−s)
w (u)2

and u < Root
(
K

(n−s)
w

)
and t ∈ Θ(n) and

(
n
t

)
/2n−k ∈ Õ(1) and t < n/2 then

PC (eP ∈ S) = 1− o(1)

and, under Conjecture 1 we have that

C = Õ(1) where C
def
= EC (|S| | dim (C) = k) (5.4)
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and where

T
def
= Nδ(n−s)

w (u)

and where the other quantities and distribution are defined in Notation 3 and where we recall

that N
def
=

(n−s
w )
2k

.

5.3.1 Main linearity relations

Our analysis relies on the following rewriting of the LPN score function defined in the previous
chapter. It comes from the linearity relations between the coordinates of h which allows us
to write hP as a linear combination of hN .

Lemma 15. For any h ∈H and x ∈ Fs
2 we have that

⟨y,h⟩ − ⟨x,hP⟩ = ⟨(x− eP)R+ eN ,hN ⟩ , ∀h ∈ C⊥

where R
def
= Lift

(
C⊥, N

)
is the unique Fs×(n−s)

2 matrix such that hP = hN R⊺ for all h ∈ C⊥.
Proof. As rank (CP) = s, from Lemma 1, N is an information set of C⊥ thus Lift

(
C⊥, N

)

is well-defined. Finally

⟨y,h⟩ − ⟨x,hP⟩ = ⟨e,h⟩ − ⟨x,hP⟩
= ⟨eP − x,hP⟩+ ⟨eN ,hN ⟩
= ⟨eP − x,hN R⊺⟩+ ⟨eN ,hN ⟩
= ⟨(x− eP)R+ eN ,hN ⟩ .

Notation 4. We define

r (x)
def
= (x+ eP)R+ eN .

This, by the way, gives a very simple explanation to the fact that the LPN model does not

hold. Indeed, hN lies in an [n − s, n − k] linear code, hN ∈
(
C⊥
)
N

=
(
CN
)⊥

. It is readily
seen that the inner product on the right-hand side of the previous equality is biased toward 0
as soon as r(x) is close to a codeword of cN ∈ CN as

〈
cN ,hN

〉
= 0. This by the way gives

some simple explanation to the bumps we see in Fig. 5.9b, each corresponds to some x which
are such that r(x) is unusually close to CN . All in all we can rewrite the score function as
follows (for our convenience we add the distribution of each quantity).

Proposition 38 (Distribution of the LPN score function using a related score function). For
any x ∈ Sst−u we have that

FL (x) = F
(CN )

⊥⋂Sn−s
w

(r (x)) , where F
(CN )

⊥⋂Sn−s
w

(r (x))
def
=

∑

hN ∈(CN )
⊥⋂Sn−s

w

(−1)⟨hN ,r(x)⟩

Moreover we have that CN ∼ UG (n− s, k − s) and for any fixed x that

r (x) ∼ U
(
Fn−s
2

)
if x ̸= eP

r (eP) = eN .

Proof. The distributions follow from Fact 7.
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5.3.2 The minimal condition on the number of needed dual vectors

This last proposition is somewhat enlightening to devise say a minimal set of conditions such
that our reduction is sound. Indeed, let us forget for now our algorithm and that we want
to find eP among a great number of x ∈ Sst−u. We should at least be able to distinguish say
x1 = eP and x2 ̸= eP with polynomial probability. Recalling that we supposed that the bet
on the error was valid, namely that |eN | = u we have by using the concentration bound on
the score function we devised in the previous chapter that the following holds.

Corollary 6 (Of Proposition 38 and Proposition 31). For any positive function f we have
that

PC

(∣∣∣FL (eP)−Nδ(n−s)
w (u)

∣∣∣ ⩾ f(n)
√
N
)
⩽

1

f(n)

PC

(∣∣FL (x)
∣∣ ⩾ f(n)

√
N
)
⩽

1

f(n)
if x ̸= eP .

Moreover, Nδ
(n−s)
w (u) is the expected value of FL (eP) and 0 is the expected value of FL (x).

We used Notation 3.

This allows us to conclude that FL (x1) and F
L (x2) are sufficiently concentrated around

their expectation such that we can distinguish them with probability 1 − o(1) as soon as

N = ω (1) /δ
(n)
w (u)2, namely

Corollary 7. For any k, t, s, w, u implicit functions of n ∈ N such that

N ∈ ω (1) /δ(n)w (u)2

we have that for any fixed x ∈ Sst−u

PC

(∣∣FL (eP)
∣∣ ⩾ 1

2
Nδ(n−s)

w (u)

)
= 1− o(1)

PC

(∣∣FL (x)
∣∣ ⩾ 1

2
Nδ(n−s)

w (u)

)
= o(1) if x ̸= eP

and where we recall that N
def
=

(n−s
w )

2k−s and where we used Notation 3.

Our intuition is that if N is smaller than this quantity we have essentially no advantage to
distinguish x ̸= eP from x = eP . This would in turn make our reduction useless: depending
on the threshold T this leads to either S containing every x ∈ Sst−u or to it being completely
empty.

5.3.3 Conjecture : the need for stronger concentration bounds

Now of course our second order concentration bounds of Corollary 6 are completely insufficient
to prove anything useful about our ability to distinguish eP among an exponential number
of x ∈ Sst−u. Our goal however is to stay tight to the previously devised minimal condition

on N = ω (1) /δ
(n−s)
w (u)2. Say for simplicity that we keep the threshold as before and count

the number of false candidates we get, that is:
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Lemma 16. Let x ∈ Fs
2 be any fixed vector such that x ̸= eP . We have that the expected

number of candidates is

E (|S| | dim (C) = k) ⩽

(
s

t− u

)
P
(
FL (x) >

1

2
Nδ(n−s)

w (u)

∣∣∣∣ dim (C) = k

)
+ 1.

where we used Notation 3.

Proof. We have that |S| =∑z∈Ss
t−u

1z∈S ⩽ 1 +
∑

z∈Ss
t−u : z ̸=eP

1z∈S , thus by linearity of the

expectation we get

E (|S|) ⩽ 1 +
∑

z∈Ss
t−u : z ̸=eP

P (z ∈ S) = 1 +
∑

z∈Ss
t−u : z ̸=eP

P
(∣∣FL (z)

∣∣ > T
)
= 1 +

(
s

t− u

)
P
(∣∣FL (x)

∣∣ > T
)

we used that from Proposition 38, the distribution of r (x) does not depend on x when x ̸= eP .
Conditioning by dim (C) = k does not change the argument.

Usually this is where the LPN modeling comes at play but as we cannot use it here we
make a conjecture which is essentially the best exponential strengthening of our second order
concentration bound we could hope for.

It is readily seen that x ̸= eP will be mistaken for eP if for example r (x)
def
= (x+ eP)R+

eN is unusually close to the code D = CN , say it is at distance at most u + o(n) (in this

case it is readily seen that FL (x) ≈ Nδ
(n−s)
w (u)). We simply make the conjecture that this

is essentially the only case where this happens. The probability that such an event happens
can easily be bounded by Õ

((
n−s
u

)
/2n−k

)
. All in all and forgetting about the fact that we are

on CN to simplify we make the following conjecture.

Conjecture 1. For any k, t, w implicit functions of n ∈ N such that
(
n
w

)

2k
∈ ω

(
n6
)

δ
(n)
w (t)2

and t < Root
(
K

(n)
w

)
and t ∈ Θ(n) and t < n/2 then

P

(
|FH (z)| ⩾ 1

2

(
n
w

)

2k
δ(n)w (t)

)
= Õ

( (
n
t

)

2n−k

)

where C ∼ U (n, k) and z ∼ U (Fn
2 ) and H

def
= C⊥⋂Snw and FH (g)

def
=
∑

h∈H (−1)⟨g,h⟩, ∀g ∈
Fn
2 .

We give heuristics that this conjecture is true in Section 5.4.

Remark 15. This conjecture is really a strengthening of the second case of Proposition 31.

Indeed, using the condition on N ′ def
=

(nw)
2k

in Conjecture 3 one can replace N ′δ
(n)
w (t) by√

f(n)
√
N ′ thus the conjecture claims that there exists f and g poly bounded such that:

P

(
|FH (z)| ⩾

√
f(n)

2

√
N ′

)
⩽ g(n)

(
n
t

)

2n−k
.

Instead of having a polynomial bound (i.e. say

√
f(n)

2 here we rather conjecture that we get
an exponential advantage as soon as t < dGV (n, k).
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5.3.4 Proof

We are now ready to prove our main proposition.

Proof of Proposition 37 . The fact that eP ∈ S with probability 1 − o(1) directly follows
from the second-order concentration bounds given in Corollary 7. The bound on the expected
number is a direct corollary of Lemma 16 and Conjecture 1. We can indeed use Conjecture 1
to upper bound the right-hand side of Lemma 16 by using the fact that if C is distributed
according to UG (n, k) conditioned on the event that dim (CP) = s and on the event that
dim (C) = k then CN ∼ U (n− s, k − s). As such we get by using Conjecture 1 that

E (|S| | dim (C) = k) ⩽ 1 +

(
s

t− u

)
P
(∣∣FL (z)

∣∣ > T
∣∣ dim (C) = k

)

⩽ 1 +

(
s

t− u

)
Õ
((

n−s
u

)

2n−k

)

⩽ 1 + Õ
( (

n
t

)

2n−k

)

= Õ(1)

where the last line follows by assumption in the proposition.

5.4 Precise behavior of the score function, veryfing the con-
jecture

Recall that a key step of our analysis in the last section relies on estimating the number of
false candidates, which as we showed can be reduced to proving some tail bounds for the score
function, namely we used Conjecture 1 that we state again here.

Conjecture 1. For any k, t, w implicit functions of n ∈ N such that

(
n
w

)

2k
∈ ω

(
n6
)

δ
(n)
w (t)2

and t < Root
(
K

(n)
w

)
and t ∈ Θ(n) and t < n/2 then

P

(
|FH (z)| ⩾ 1

2

(
n
w

)

2k
δ(n)w (t)

)
= Õ

( (
n
t

)

2n−k

)

where C ∼ U (n, k) and z ∼ U (Fn
2 ) and H

def
= C⊥⋂Snw and FH (g)

def
=
∑

h∈H (−1)⟨g,h⟩, ∀g ∈
Fn
2 .

In this section we want to give compelling evidence that this conjecture is indeed true and
we do that by showing that the distribution of the score function is precisely described with
a simple model which implies our conjecture.
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5.4.1 Duality formula and the poisson model

Our main tool to study the distribution of FH (z) is the following dual expression for the
score function expressing FH (z) using the weight enumerator of the coset code C + z.

Proposition 39 (Main duality tool). Let n, k, w ∈ N. Let C ∈ C [n, k] and H = C⊥⋂Snw
and let z ∈ Fn

2 . We have

FH (z) =
n∑

i=0

Ni (C + z)
K

(n)
w (i)

2k
(5.5)

where we recall that Ni (C + z) is the weight enumerator of C + z, namely

Ni (C + z)
def
=
∣∣∣(C + z)

⋂
Sni
∣∣∣ .

Proof. We have that

FH (z) =
∑

h∈C⊥⋂Sn
w

(−1)⟨z,h⟩

=
∑

h∈C⊥

(−1)⟨z,h⟩1h∈Sn
w

=
1

2k

∑

c∈C
j(c) (Poisson summation)

where the function j is the Fourier transform of the following function h → (−1)⟨z,h⟩1h∈Sn
w
.

As such we have that

j (c) =
∑

h∈Fn
2

1h∈Sn
w
(−1)⟨z+c,h⟩

=
∑

h∈Sn
w

(−1)⟨z+c,h⟩

= K(n)
w (|c+ h|) .

The above dual formula allows reducing the study of the distribution of FH (z) to the
study of the distribution of the weight enumerator Ni (C + z). The problem is that current
knowledge of this distribution is insufficient to prove our conjecture, see Section 5.4.3.2 for
more details. This leads us to make the weight enumerator following a Poisson variable of
the right expected value, see Section 5.4.3.3 for more details.

Model 3 (Poisson model). Let C ∼ U (n, k) and let z ∼ U (Fn
2 ). We make the model that for

any i ∈ J0, nK

Ni (C + z) ∼ Poisson

( (
n
i

)

2n−k

)
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5.4. Precise behavior of the score function, veryfing the conjecture

5.4.2 Heuristic argument that the conjecture is valid

The key thing is that making this model allows us proving Conjecture 1 while observing
experimentally that it keeps the distribution of FH (z) unchanged, namely we will get the
following proposition along with Fig. 5.4.

Proposition 40. Under Model 3, Conjecture 1 is true.

Proof. The proof is given in Section 5.6.1.

0 0.2 0.4 0.6 0.8 1 1.2
·104

2−15

2−10

2−5

20

T

P
(F

H
(z
)
>
T
)

Modeled distribution
Experimental distribution

Figure 5.4: Experimental validity of the Poisson model (Model 3). We plot the distribution
of the score function FH (z) against the modeled distribution of FH (z) under the Poisson
model. More precisely, in the first case we drew the distribution of FH (z) where C ∼
U (n, k) and z ∼ U (Fn

2 ) and in the second case we drew the distribution of FH (z) when
replacing the weight enumerator by Poisson variables given by the model, namely we drew∑n

i=0XiK
(n)
w (i) /2k where Xi ∼ Poisson

((
n−s
i

)
/2n−k

)
are independent Poisson variables.

Here n = 100, k = 30, s = 30, w = 6

Remark 16. Both curve in Fig. 5.4 were obtained with Monte-Carlo methods. Namely,
to plot the experimental distribution of the score function we drew multiple codes C and z
according to U (n, k) and U (Fn

2 ) and plotted the resulting experimental distribution. The
modeled distribution of the score function was obtained by drawing multiple score functions
according to the distribution of the conjecture. Finally, in the modeled distribution the Poisson
variables are taken independently so that we can actually estimate numerically the distribution
of F but note that this independence is not required for the proof of Proposition 40.
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5.4.3 Discussion

5.4.3.1 Interpreting the conjecture in light of the duality formula

Recall that in Corollary 7 we showed that if y is say at distance t from C and as long as

N = ω (1) /δ
(n)
w (t)2 then with probability 1− o(1) we have that

FH (y) = Nδ(n)w (t) (1 + o(1)) .

Our duality formula can be rewritten as

Corollary 8 (Corollary of Proposition 39). Let N
def
=
(
n
w

)
/2k we have that

FH (z) =
n∑

i=0

Ni (C + z)Nδ(n)w (i) .

Thus

FH (y) = Nδ(n)w (t) +

n∑

i=0

Ni (C \ {0}+ y)Nδ(n)w (t) .

which is seen to be dominated by this first term at least with probability 1−o(1). Essentially
our conjecture implies that this is in fact the case with probability 2−Ω(n). A maybe more
direct reformulation is that our conjecture says that when z ∼ UG (n, k) the event ”FH (z) is

very big (say superior to Nδ
(n)
w (t))” is completely dominated by the existence of an unusually

low weight codeword in the coset, say for example Nt (C + z) ̸= 0 and that the other terms
the sum do not come into play here.

5.4.3.2 Why we need the Poisson model

Problematically, our proof attempts of this conjecture somewhat reduces to proving exponen-
tial concentration bounds on the weight enumerator of random linear codes. More precisely
we show in the next section that it is sufficient to prove, when i > dGV (n, k) (namely, when
(ni)
2n−k ∈ 2Θ(n)) that there exists some positive poly-bounded function f such that we have say

P
(
|Ni (C + z)− E (Ni (C + z))| > f(n)

√
Var (Ni (C + z))

)
= 2−Ω(n) ? (5.6)

We do not know if such bound are true and could be proven. Interestingly enough it could
be achieved using Markov style inequalities by tightly bounding some higher order central
moments of the weight enumerator (contrary to simply use the second order central moment
gives us only a polynomial bound), but, a recent line of work [LM20, Sam24] proved that,
when D ∼ UH (n, k) the higher central moments (from saym > 4) E ((Ni (D)− E (Ni (D)))m)

are order of magnitude dramatically bigger than Var (Ni (D))m/2 so we could nto use their
result to prove anything toward this.

5.4.3.3 Rationale behind the Poisson model

Note that a somewhat slightly more natural model would be to model Ni (C + z) as a Bino-
mial distribution. Indeed, recall that we can write the weight enumerator as Ni (C + z) =
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∑
r∈Sn

i
1r∈C+z. Supposing that the 1r∈C+z are mutually independent variables we obtain that

Ni (C + z) follows Binomial
((

n
i

)
, 1/2n−k

)
which is of expected value

(
n
i

)
/2n−k. Note that the

Binomial distribution converges to the Poisson distribution with the same expected value.
And, because we find that the Poisson distribution is easier to handle, we will make the
model that the weight enumerator follows a Poisson variable. Notably both variable share
the first two moments.

Fact 19. Let C ∼ U (n, k), let z ∼ U (Fn
2 ) and i ∈ J1, nK and X ∼ Poisson

((
n
i

)
/2n−k

)
, then

we have that

E (Ni (C + z)) =

(
n
i

)

2n−k
, Var (Ni (C + z)) ⩽

(
n
i

)

2n−k

E (X) =

(
n
i

)

2n−k
, Var (X) =

(
n
i

)

2n−k

5.5 Main theorem and results

5.5.1 Main theorem

Because the number of false candidate is poly bounded in our case it will be beneficial, to
simplify the analysis to use our proved variant of statistical decoding Algorithm 2 in our
last decoding step: indeed by reusing the already produces dual vectors, we are guaranteed
that the complexity of checking the false candidates will not dominate. And the choice of
parameters for RLPN guarantees that this decoder succeed with sufficiently good probability.

Theorem 7. For any k, t, s, w, u,Niter, T ∈ N implicit functions of a parameter n ∈ N (n is
growing to infinity) and any procedure Compute-Dual-Vectors that are such that

1. (Computing all the dual vectors)

PD∼UG(n−s, k−s)

(
Compute-Dual-Vectors(D) = D⊥

⋂
Sn−s
w

)
∈ 1− o(1) ,

2. (Main constraint that we have enough dual vectors)

(
n−s
w

)

2k−s
∈ ω

(
n6
)

(
δ
(n−s)
w (u)

)2 ,

3. (Unimportant technical constraints) u < Root
(
K

(n−s)
w

)
and t < n/2 and t ∈ Θ(n) and

(
n
t

)
/2n−k ∈ Õ(1) and k − s ∈ ω (1) and n− k ∈ ω(1).

4. (Auxiliary quantities) Niter = n
(nt)

(n−s
u )( s

t−u)
and T = 1

2δ
(n−s)
w (u)

(n−s
w )

2k−s

5. The procedure Sub-Decoder(CN , y′, u) is our proved variant of statistical decoding,
namely Algorithm 2 where we reuse for the set of dual vectors HN which is computed
in RLPN and choose the same threshold T .
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then, under Conjecture 1, there exists an algorithm (Algorithm 12 with the right stopping
conditions) that solves DPG (n, k, t) with probability 1− o(1) in time and memory

Time = Õ
( (

n
t

)
(
n−s
u

)(
s

t−u

)
(
2kaux + Teq

))
,

Memory = Õ
((

2kaux +Meq

))
,

and where Teq, Meq are the time and memory complexity of Compute-Dual-Vectors(D, w)
and where we recall that δ

(n)
w (t) is defined in Definition 25 and Root

(
K

(n)
w

)
is defined in

Definition 26.

Proof. Concerning the correctness. There exists with probability 1 − o(1) an iteration such
that eN = u (choice of Niter) and dim (CP) = s (because k − s ∈ ω (1)) and H = {h ∈
C⊥ : |hN | = w} (constraint on the procedure computing the vectors). Now applying the
main Proposition 37 we get that in such an iteration we have with probability 1− o(1) that
eP ∈ S. Clearly, because of the n6 term in the main constraint

(n−s
w )

2k−s ∈
ω(n6)(

δ
(n−s)
w (u)

)2 we

get that the Sub-Decoder procedure succeeds in recovering the rest of the error eN with
probability 1 − o(1) (see Algorithm 2). Concerning the complexity, we stop an iteration if
the size of S is greater than n C where C is defined in Proposition 37. This allows us to
bound the expected time complexity of the algorithm while it is readily seen using Markov’s
inequality that it does not undermine the probability of success of the algorithm (where we
use the additional fact that dim (C) = k with probability 1− o(1) because n− k ∈ ω(1)).

5.5.2 Asymptotic expressions

Let us now give the asymptotic counterpart of Theorem 8.

Remark 17. In what follows the relative quantities and non-relatice quantities are related as
R = k/n, τ = t/n, σ = s/n, ω = w/n, µ = u/n.

Definition 35 (Asymptotic complexity exponent of RLPN). Let R ∈]0, 1[ and τ ∈]0, 1/2[,
such that τ ⩽ τGV (R) and let αeq and βeq be two bivariate functions (the complexity expone-
nent of the procedure to compute the dual vectors). For any σ ∈]0, R[ and ω ∈]0, (1− σ)/2[
and µ ∈]0, 1− σ[ that verify the constraints that

• (Main constraint)

(1− σ)h
(

ω

1− σ

)
− (1− σ) ⩾ −2(1− σ)κ

(
ω

1− σ ,
µ

1− σ

)
(5.7)

• (Auxiliary constraint)

µ < 1/2−
√
ω(1− ω) (5.8)
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we define the time and memory complexity exponent αRLPN and βRLPN respectively as

αRLPN (R, τ ; σ, ω, ν;αeq)
def
= π +max

(
(1− σ)αeq(

R− σ
1− σ ,

ω

1− σ ), σ
)

βRLPN (R, τ ; σ, ω, ν;βeq)
def
= max

(
(1− σ)βeq(

R− σ
1− σ ,

ω

1− σ ), .
)
σ

π
def
= h (τ)− σh

(
τ − µ
σ

)
− (1− σ)h

(
µ

1− σ

)

where we recall that κ (, ) is defined in Corollary 5.

Proposition 41 (Asymptotic performance of RLPN). For any constants R ∈]0, 1[, τ ∈]0, 1/2[,
σ ∈]0, R[, ω ∈]0, (1 − σ)/2[, µ ∈]0, 1 − σ[ that verify the constraints of Definition 35 and
under Conjecture 1 we have that

1. (RLPN + Dumer subroutine) there exists an algorithm that solves DPG (n, ⌊Rn⌋ , ⌊τn⌋)
in time and memory respectively

T = Õ
(
2n αRLPN(R,τ ; σ, ω, µ;αdual−Dumer−routine)

)
, M = Õ

(
2n βRLPN(R,τ ; σ, ω, µ;βdual−Dumer−routine)

)

where we recall that αdual−Dumer−routine and βdual−Dumer−routine are bivariate functions
defined in Proposition 13.

2. (RLPN + BJMM subroutine) under the heuristic that the procedure given in Proposi-
tion 14 outputs all dual vectors of weight w with probability 1 − o(1) then there exists
an algorithm that solves DPG (n, ⌊Rn⌋ , ⌊τn⌋) in time and memory respectively

T = Õ
(
2n αRLPN(R,τ ; σ, ω, µ;αdual-BJMM-routine)

)
, M = Õ

(
2n βRLPN(R,τ ; σ, ω, µ;βdual-BJMM-routine)

)

where we recall that αdual-BJMM-routine and βdual-BJMM-routine are bivariate functions de-
fined in Proposition 14.

Remark 18. The mild heuristic we have to use in the case of RLPN + BJMM subroutine
comes from the fact that we only proved in Proposition 14 that the BJMM subroutine outputs
a proportion 1− o(1) of all dual vectors with probability 1− o(1) (and not all the dual vectors
with probability 1− o(1) as required by our theorem). This is not really a concern for us.

5.5.3 Results

In this section we optimized the complexity exponent of double-RLPN by choosing a tech-
nique to compute the dual vectors, fixing a rate R and the relative decoding distance τ and
minimizing (over σ, ω, µ) the time complexity exponent αRLPN under the constraint that

(1− σ)h
(

ω

1− σ

)
− (1− σ) ⩾ −2(1− σ)κ

(
ω

1− σ ,
µ

1− σ

)

and checking afterwards that the obtained optimal parameters were indeed outside the root
region, namely that τ < 1/2 −

√
ω(1− ω). The curves labelled Genie-Aided RLPN is an

ideal scenario were we supposed that each dual vector of weight w on N can be computed
in polynomial time. This gives a lower-bound on the complexity of our algorithm.
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5.5.4 At Gilbert-Varshamov distance
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Figure 5.5: Asymptotic complexity exponent, relative to the codelength of some generic
decoders when decoding codes of rate R at the Gilbert-Varshamov distance, namely τ =
τGV (R)

Remark 19. The complexity exponent of RLPN could be further computed for higher rates
but we explain in Section 5.5.6.1 why we have decided to stop it at this specific rate (R ≈ 0.35
for RLPN + BJMM)

Interestingly one can notice that the complexities of the ISD’s and RLPN when using the
same subroutine, say [BJMM12] compared to RLPN + BJMM are not symmetric. We observe
that RLPN + BJMM at rate R is worse than the complexity of ISD [BJMM12] at rate 1.0−R.
We believe that this phenomenon is a consequence of the relatively bad behavior of RLPN in
the extremely low rate setting that we mention later.
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5.5.4.1 Shape of the parameters
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Figure 5.6: Asymptotic parameters,relative to the codelength of RLPN + BJMM

We noticed afterwards that it seems like for our parameters of interest here the gain for making
the bet here is extremely limited if not completely null. Indeed, one can see in Fig. 5.6 that
the t/n and u/(n− s) are almost equal.

5.5.5 Gaining a square root factor in the low rate regime R ≈ 0.01

The next Fig. 5.7 show the behavior of our algorithm in the low rate regime. We see that
for relatively low rate say R ∈ [0.01, 0.02] RLPN, regardless if we use Dumer or BJMM
subroutine, achieves a complexity of around

√
2R n. This beats all the current ISD’s which

have a complexity just slightly smaller than 2R n.
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Figure 5.7: Asymptotic complexity exponent, relative to the codelength n of some generic
decoders when decoding codes of rate R at the Gilbert-Varshamov distance in the very low
rate regime.
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5.5.5.1 When the rate tends to 0 the complexity of RLPN is that of the Prange
decoder

Recall that for ISD’s, the introduction of collision in Dumer [Dum86, Dum91] allowed to gain
a square root over the Prange decoder when the rate R tends to 1, going from 2(1−R) n+o(n)

for Prange to
√
2(1−R)n+o(n) for Dumer. Here we could have expected some kind of dual

phenomenon where when R tends toward 0 the complexity of RLPN would gain a square root
factor over the Prange decoder, especially in light of the previous Fig. 5.7. However, it is not
the case. Indeed we observe in Fig. 5.8 that the complexity of RLPN + Dumer tends, slowly,
to the complexity of the naive enumeration, namely some 2Rn when R grows to 0. This stays
true even for Genie-Aided RLPN. It remains an open question to understand how we could
mitigate this phenomenon and really gain a square root over Prange.
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Figure 5.8: Asymptotic complexity exponent, relative to the codelength n of some generic
decoders when decoding codes of rate R at the Gilbert-Varshamov distance in the very low
rate regime.

5.5.6 Additional results

5.5.6.1 When using an iteration of ISD BJMM

In the case of RLPN it makes sense in the higher rate regime to use a better ISD than the
BJMM subroutine. Notably in the first version of the algorithm, in [CDMT22, Section 5],
we tried to use a full-fledged iteration of the ISD BJMM [BJMM12] to produce low-weight
dual vectors on N , see Section 4.3.3 for more details. The crucial point is that we perform a
polynomial filter on the part of the dual vector that is random and intervenes in the error of the
LPN sample. However, this strategy was never proven without using the flawed LPN model,
and we noticed that, as long as the rate was smaller than 0.35, no difference in performance
could be seen between this strategy and simply taking only the BJMM subroutine. The
advantage appears only in the higher rate regimes. Because this is already a zone where the
best ISD outperforms RLPN, there is no point complicating the algorithm and analysis here.
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5.5.6.2 In the sublinear regime

It is easy to see that, when the rate R is constant and the error weight is sublinear in n,
namely t = o(n) then, to be remotely competitive and because the cost of the FFT is some
O(s2s) we have no choice but to take s = O(t) and thus s = o(n). Consequently, the code
CN in which we compute the short dual vectors is of length n − o(n) and rate R − o(n)
and thus the remark that the only reasonable choice to compute the dual vectors is to use
a variation of the Prange decoder applies. In this setting we claim that we could prove that
the complexity of RLPN is essentially as bad as the complexity of Statistical decoding in the
sublinear regime (see Section 4.3.2 and [DT17a]) namely the complexity would be the square
of the Prange decoder, that is

2−2t log2(1−R).

5.6 Appendices

5.6.1 Proof that the Poisson model implies our conjecture

We prove here Proposition 40. Let us rewrite what we want to prove in a simpler manner.

Conjecture 2 (Rewriting of Conjecture 1). For any k, t ∈ N implicit functions of n ∈ N
such that t ∈ Θ(n) and t < n/2 and t < Root

(
K

(n)
w

)
and

K(n)
w (t) ∈ ω

(
n3
)
√
2k
(
n

w

)
(5.9)

then we conjecture that

P

(
n∑

i=0

NiK
(n)
w (i) > K(n)

w (t)

)
= Õ

( (
n
t

)

2n−k

)
.

where C ∼ U (n, k) and z ∼ U (Fn
2 ) and where we recall that Ni

def
= Ni (C + z) .

Fact 20. Conjecture 1 is true if and only if Conjecture 2 is true.

Proof. This is straightforwardly done by using the duality formula on the score function
(Proposition 34) and expanding the quantities in Conjecture 1 to obtain Conjecture 2.

Consequently, to prove Proposition 40 we only have left to prove the following proposition.

Proposition 42. Under Model 3 we have that Conjecture 2 is true.

Proving this proposition is the goal of the rest of this section. We only give the interme-
diate lemmas for now and prove them later.

Problematically we first observe that bounding each term of the sum directly is really not
an option as essentially the innermost terms are already way too big. Indeed, due to the fact

that the Krawtchouk polynomial K
(n)
w achieves point-wise its L2 norm between each of its

root, we can show easily that there exists i = n/2 + o(n) such that

E (Ni)K
(n)
w (i) = 2o(n)

√
2k

√
2k
(
n

w

)
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which is already exponentially bigger than our target

K(n)
w (t) = ω

(
n6
)
√
2k
(
n

w

)
.

Consequently, in order look at each term of the sum individually, we introduce a key centering
lemma making use of the orthogonality property of Krawtchouk polynomials and which shows
that in the previous sum we can replace the weight enumerator by its centered (around its
expectation) counterpart, namely Ni −Ni, allowing to gain a huge factor.

Lemma 17 (Key centering lemma). We have that

n∑

i=0

NiK
(n)
w (i) =

n∑

i=0

(
Ni −Ni

)
K(n)

w (i)

where Ni is the expected value of Ni, namely Ni =
(ni)
2n−k .

Proof. This is a direct consequence of Proposition 19 as

n∑

i=0

NiK
(n)
w (i) =

1

2n−k

〈
K(n)

w ;K
(n)
0

〉

= 0

Now we can really look at each term individually with the following.

Lemma 18.

P

(
n∑

i=0

(
Ni −Ni

)
K(n)

w (i) >
1

2
K(n)

w (t)

)
⩽ n max

i=0···n
P
(∣∣Ni −Ni

∣∣ > 1

2 n
Ri

)

where

Ri
def
=

∣∣∣∣∣
K

(n)
w (t)

K
(n)
w (i)

∣∣∣∣∣ .

Proof. The proof is straightforward using the triangular inequality along with the bound that∑n
i=0 xi ⩽ nmaxxi.

We now split the indexes in two parts. The first one is composed of indexes essentially
smaller than t and which accounts for the rare events where the coset would have very low
weight codeword (i.e. the bumps we see on the right hand side of Fig. 5.4). The second one
is composed of indexes bigger than t and accounts for the typical ”normal like behavior” of
the sum, this is where we use the Poisson model (i.e. this accounts for the left hand side of
Fig. 5.4).

Bounding these probabilities crucially rely on our parameter constraints which allows
relating Ri to the variance of Ni:
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Lemma 19. For any k, t ∈ N implicit functions of n ∈ N such that Eq. (5.9) holds then we
have that

Ri ∈ ω
(
n3
)√

Ni ∀i ∈ J0, nK.
This allows us to get the following bounds.

Definition 36. Define the dominant set D as

D def
= {i ∈ J1, nK : Ri ⩽ n3}.

Lemma 20. For any k, t ∈ N implicit functions of n ∈ N such that Eq. (5.9) holds then for
any i ∈ D we have that

P
(∣∣Ni −Ni

∣∣ > 1

2 n
Ri

)
< P (Ni ̸= 0)

and for any i /∈ D we have that

P
(∣∣Ni −Ni

∣∣ > 1

2 n
Ri

)
< P

(∣∣Ni −Ni

∣∣ > n2

2
max

(√
Ni, 1

))
. (5.10)

We simply bound the probability in the case i ∈ D by
(
n
i

)
/2n−k using a simple union

bound and bound the probability in the case i /∈ D by some 2−ω(n) by using the Poisson
model, which allows writing

Lemma 21. For any λ positive implicit function of n and any g positive implicit function of
n such that g ∈ ω(1) we have that

PX∼Poisson(λ)

(
|X− λ| > g max

(√
λ, 1
))

= 2−ω(n). (5.11)

Interestingly enough we observe that the previous bounds on Ri given by Lemma 19 is
tight when i ≈ n/2 but when i decreases there is an exponential gap. As such our Poisson
model is really useful precisely in the regime i ≈ n/2 and we think that for intermediate i’s
(but not in D) we could tighter bounds to prove directly our result.

All in all, these lemmas allow to prove our main proposition.

Proof of Proposition 42. Let us consider the implicit functions of n ∈ N, k, t, w that meet the
conditions of the proposition. Applying in sequence Lemmas 17, 18 and 20 we only have left
to prove the two following equalities

max
i∈D

P (Ni ̸= 0) = Õ
( (

n
t

)

2n−k

)
, (5.12)

max
i/∈D

P
(∣∣Ni −Ni

∣∣ > n2

2
max

(√
Ni, 1

))
= Õ

( (
n
t

)

2n−k

)
. (5.13)

Let us prove the first equality. It is readily seen that

P (Ni ̸= 0) = P


 ⋃

x∈Sn
i

”x ∈ C + z”




⩽

(
n
i

)

2n−k
.
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Now we only have left to show that maxi∈D i ⩽ t+O(log n), indeed as t = Θ(n) and t < n/2
by assumptions in the proposition, this would directly yield that

max
i∈D

P (Ni ̸= 0) ⩽ max
i∈D

(
n
i

)

2n−k

⩽ Õ
( (

n
t

)

2n−k

)
.

Let i ∈ D and let us upper bound it. By definition of D we have that
∣∣∣∣∣
K

(n)
w (t)

K
(n)
w (i)

∣∣∣∣∣ ⩽ n3 (5.14)

By assumption in the proposition, t < Root
(
K

(n)
w

)
, so we have from Proposition 24 we have

that
∣∣∣K(n)

w (t)
∣∣∣ ∈ Ω̃

(
2κ̃(w/n, t/n)n

)
(5.15)

Moreover, independently of the value of i we always we have that
∣∣∣K(n)

w (i)
∣∣∣ ⩽ Õ

(
2κ̃(w/n, i/n)n

)
. (5.16)

Combining all these two inequalities this means that

n3 = Ω̃
(
2(κ̃(w/n, t/n)−κ̃(w/n, i/n))n

)

Now, from Proposition 25, κ̃ (w/n, i/n) is differentiable and strictly decreasing in i/n. Thus,
clearly i ⩽ t+O(log n) which concludes the proof of Eq. (5.12).

Let us now prove Eq. (5.13). This is where we use the Poisson model. We have that
Ni =

(
n
i

)
/2n−k which is also the parameter of the Poisson model, thus we can directly apply

Lemma 21 to prove that

P
(∣∣Ni −Ni

∣∣ > 1

2 n
Ri

)
< P

(∣∣Ni −Ni

∣∣ > n2

2
max

(√
Ni, 1

))
= 2−ω(n)

This concludes the proof.

5.6.1.1 Proof of the intermediate lemmas and of the last proposition

Proof of Lemma 19. Recall that we want to lower bound Ri =

∣∣∣∣
K

(n)
w (t)

K
(n)
w (i)

∣∣∣∣. From Eq. (5.9) we

have that

K(n)
w (t) = ω

(
n3
)
√

2k
(
n

w

)

We can upper bound
∣∣∣K(n)

w (i)
∣∣∣ using Proposition 19 which gives that

∑n
j=0

(
n
j

)
K

(n)
w (j)2 =

2n
(
n
w

)
. As a sum of positive term it’s i’th can be upper bounded by the total, namely

(
n

i

)
K(n)

w (i)2 ⩽ 2n
(
n

w

)
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which yield
∣∣∣K(n)

w (i)
∣∣∣ ⩾

2n
(
n
w

)
(
n
i

) .

As such

∣∣∣∣∣
K

(n)
w (t)

K
(n)
w (i)

∣∣∣∣∣ ⩾ ω
(
n3
)
√
2k
(
n

w

)√ (
n
i

)

2n
(
n
w

)

⩾ ω
(
n3
)
√ (

n
i

)

2n−k

⩾ ω
(
n3
)√

Ni.

Proof of Lemma 20. Let us prove the first inequality. Let i ∈ D. We only have to prove that
1
2 nRi > Ni and the result follows.

First we upper bound and lower bound Ri by using the fact that i ∈ D and Lemma 19,
which gives

n3 > Ri > n3
√
Ni, (5.17)

n2

2
>

1

2 n
Ri >

n2

2

√
Ni. (5.18)

Now Eq. (5.17) proves that
√
Ni < 1 and thus that

√
Ni > Ni and Eq. (5.18) proves that

1
2 nRi >

√
Ni all in all yielding that 1

2 nRi > Ni which concludes the proof.

Let us prove the second inequality. Let i /∈ D. By assumption on i we have that

Ri ⩾ n3

and with the previous lemma that

Ri ⩾ n3
√
Ni

thus
1

2n
Ri ⩾

1

2
n2max

(√
Ni, 1

)
.

Finally, this yield that

P
(∣∣Ni −Ni

∣∣ > 1

2 n
Ri

)
⩽ P

(∣∣Ni −Ni

∣∣ > 1

2
n2max

(√
Ni, 1

))

Proof of Lemma 21. From [Gol17, Prop 11.15] we have

P (|X− λ| > r) ⩽ 2 e
− r2

2 (λ+r) .
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Thus,

P
(
|X− λ| > g(n)max

(√
λ, 1
))

⩽ 2 e
− g(n)2 max(λ,1)

2 (λ+g(n)max(
√

λ,1))

⩽ 2 e

− g(n)

2

(
λ+g(n)max(

√
λ,1)

g(n)max(λ,1)

)

.

We only have left to show that

λ+ g(n)max
(√

λ, 1
)

g(n)max (λ, 1)
= O(1) .

First it is readily seen that we have that (g(n) = ω(n))

λ

g(n)max (λ, 1)
= O(1) ,

and second,

g(n)max
(√

λ, 1
)

g(n)max (λ, 1)
=

{
1 = O(1) if λ ⩽ 1
1√
λ
= O(1) if λ > 1.

5.6.2 Problem with the LPN modeling to analyze the algorithm and first
version of RLPN.

RLPN was first introduced in [CDMT22] as a slight variant, which we call RLPN0 here and
which we analyzed using the following LPN modeling.

Model 4 (LPN modeling.). Let C ∼ UG (n, k) and let e ∈ Snt . Let P and N be two
complementary subsets of J1, nK and let H ⊂ {h ∈ C⊥ : |hN | = w} and denote by ε the bias
of the noise of the LPN samples given by H , namely

ε
def
= biash∼U(H ) (⟨eN ,hN ⟩) .

We make the model that the samples given by L = (hP , ⟨e,h⟩)h∈H given by H are distributed
as true LPN samples of secret eP , namely that

(hP , ⟨e,h⟩)h∈H ∼
(
a(i),

〈
eP ,a

(i)
〉
+ e(i)

)
i=0···|H |

where the samples a(i) ∼ U
(
F|P|
2

)
and the noise is distributed as e(i) ∼ Ber

(
1−ε
2

)
, moreover

all the variables are independent.

The RLPN0 algorithm differed from the one we described in this thesis by its way of
choosing out some candidates x from the evaluation of the score function FL. Basically it
took, at each iteration the unique x∗ ∈ Fs

2 that maximized the LPN score function, namely

x∗ = max
x∈Fs

2

FL (x)
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and simply concluded that x∗ was eP if FL (x∗) was superior to a certain well-chosen threshold
T and stopped the whole algorithm returning this x∗ a soon as one candidate meeting this
condition was found.

The LPN modeling allowed proving that as long as the number of samples N is some
N = Õ

(
1/ε2

)
the preceding procedure recovers the secret eP with overwhelming probability

and that basically there will not be any false candidates and there is no need for finer filtering
the x ∈ Fn

2 . In turn, we showed that the bias ε of the LPN samples could be precisely estimated

as ε ≈ δ(n−s)
w (u) overall this yielded the simple condition that as long asN = ω (1) /δ

(n−s)
w (u)2

RLPN0 would succeed.

5.6.2.1 Experimental discrepancy with the LPN modeling

We show here experimentally that this model does not hold and that in all generality this
can be problematic in some regimes in RLPN0. First, let us compute the expected behavior
of the false candidates under the LPN modeling

Proposition 43. Under the LPN modeling we have that

ELPN

(∣∣{x ∈ Fs
2 : x ̸= eP and FL (x) > T}

∣∣) = (2s − 1)P
(
X ⩾

T + |H |
2

)
.

where

X ∼ Binomial

(
|H | , 1

2

)
.

Proof. Let x ∈ Fs
2 be such that x ̸= eP . We have that

FL (x) =
∑

hH

(−1)⟨y,h⟩−⟨x,hP⟩

=
∑

hH

(−1)⟨eP−x,hP⟩+⟨eN ,hN ⟩

= 2 |H0| − |H | .

where H0 = {h ∈H : ⟨eP − x,hP⟩+ ⟨eN ,hN ⟩ = 0}. From the LPN modeling, we get that
|H0| ∼ Binomial (|H | , N). Our results follow using the linearity of the expected value.

We plot it against its experimental counterpart in Fig. 5.9. We observe concerning differ-
ences in the very low rate regime and significant differences in the high regime rate.
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LPN modeling
Experimentation
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Figure 5.9: Experimental average number of false candidates∣∣{x ∈ Fs
2 : x ̸= eP and FL (x) > T}

∣∣ against its LPN modeled counterpart. The ex-
perimental curve was obtained by running multiple times one iteration of RLPN0 in which we
compute the whole set of dual vectors of weight w on N , namely H = {h ∈ C⊥ : |hN | = w},
each time with a new instance of DPG (n, k, dGV (n, k)). We plotted the modeled distribution
by averaging the expectation of Proposition 43 with the experimental values for |H |.

This shows the need to change slightly RLPN0 by i) considering a set of candidates and
not only one and ii) add an exponential filtering step that only keeps candidates that are such
that of the right weight t− u.
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Chapter 6

Dual Attack 3.0 : Reducing
sparse-LPN to LPN

Summary

In this chapter we devise a generalization of RLPN that we call double-RLPN. Our main
observation is that the LPN problem to which we reduced in RLPN is in fact a sparse− LPN
problem: its secret is of low Hamming weight as it is some part of the error vector of a
decoding problem. However, the FFT-based solver that we use to solve this LPN problem
does not leverage this. In double-RLPN we leverage the sparseness of the secret by using the
technique of [GJL14] to further reduce the dimension of our LPN problem by compressing
the secret with the help of a linear code that we know how to decode. We propose and
analyze a concrete instantiation of this decoding technique with a product of a constant
number of random linear codes that allows us to compress optimally while incurring only
a polynomial overhead in our regimes of interest. We devise a second-order concentration
bound to estimate the new noise of our LPN samples. We show that the introduction of this
secret compressing technique introduces many false candidates, namely candidates for the
secret of our LPN problem that are not related to our original LPN problem secret. However,
we are able to precisely bound their number with a conjecture. We show that, in the end, the
cost of dealing with those never dominates the complexity of our decoder. This conjecture is
a generalization of the conjecture made in RLPN and is about the exponential tail behavior
of the score function. We thoroughly verify it experimentally. All in all, this allows us to
beat all known decoders when decoding random binary linear codes at the Gilbert-Varshamov
distance for constant rates R smaller than 0.42, see Fig. 6.1. This chapter contains [CDMT24]
rewritten and with some small additional results.
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Figure 6.1: Asymptotic complexity exponent, relative to the codelength, of some generic
decoders when decoding random codes of rate R at the Gilbert-Varshamov distance. Our
corrected analysis of [BM18] is given in Section 2.1.3.4
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6.1 Introduction

6.1.1 The LPN secret in RLPN is sparse

Recall that in the previous chapter we reduced decoding y = c+ e with c ∈ C and e ∈ Snt to
an LPN problem. This is done by chosing P and N two complementary subsets of J1, nK of
size say s and n − s respectively and computed many dual vectors h ∈ C⊥ which are of low
hamming weight on N , each yielding the following sample of secret s = eP :

(a, ⟨a, s⟩+ e) where





a = hP

s = eP

e = ⟨eN ,hN ⟩ .
(6.1)

The obtained LPN problem is then solved with an FFT. Here we notice that the LPN problem
we have to solve is actually a sparse LPN problem: the secret eP is not uniformly distributed
among Fs

2 since it is of low weight as it is the restriction of an error vector which is itself of
low weight. Unfortunately, the FFT algorithm used for recovering the secret eP is unable to
exploit this fact. In a sense, what we need here to improve RLPN decoding is an algorithm
for solving sparse secret LPN in the very noisy regime, where we recall that very essentially
our noise is exponentially small in the error weight |e|.

6.1.2 Reduction from Sparse LPN to Plain LPN

Here we reuse the technique of [GJL14] that compress the secret of the LPN problem with a
linear code. This reduction allows to reduce the LPN problem dimension but increases the
noise. We recall here the reduction.

6.1.2.1 The reduction

Say we have access to a linear code Caux of length s and dimension kaux which we know how
to decode efficiently for essentially every word of the space. Say we have an LPN sample
(a, b) = (a, ⟨a, s⟩+ e) for which the secret s ∈ Fs

2 is sparse. The idea is to decode a ∈ Fs
2 onto

Caux, yielding say a = caux+eaux where caux ∈ Caux and the error vector eaux is of low weight.
We notice that this directly yield the sample (caux, ⟨caux, s⟩+ ⟨eaux, s⟩+ e) where now a is
replaced by caux which lies in a lower dimension subspace but where the new noise, ⟨eaux, s⟩+e,
has increased. We can really take advantage of the fact that caux lies in a linear subspace by
considering Gaux a generator matrix of Caux and writing caux as caux = mauxGaux, this allows
rewriting ⟨caux, s⟩ = ⟨mauxGaux, s⟩ = ⟨maux, sG

⊺
aux⟩ which finally yields the sample


maux︸ ︷︷ ︸

∈Fkaux
2

,

〈
maux, sG

⊺
aux︸ ︷︷ ︸

secret

〉
+ ⟨eaux, s⟩+ e︸ ︷︷ ︸

noise




making our new secret sG⊺
aux ∈ Fkaux

2 . Knowing this new secret reveals some linear combina-
tion of eP .
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6. Dual Attack 3.0 : Reducing sparse-LPN to LPN

6.1.2.2 Shape of the reduced LPN samples of RLPN

All in all the new samples are now (maux, ⟨h,y⟩) instead of (hP , ⟨h,y⟩). We have:

(a′,
〈
a′, s′

〉
+ e′) where





a′ = maux ∈ Fkaux
2

s′ = ePG⊺
aux with hP = mauxGaux + eaux

e′ = ⟨eP , eaux⟩+ ⟨eN ,hN ⟩ and |eaux| low .

(6.2)
Before, basically the optimal parameters for RLPN-decoding were such that the cost of FFT
decoding the LPN secret, namely Õ(2s) is of the same order as the cost for computing the
samples, say to simplify that this cost is 1/ε2 where ε is the bias of the LPN sample in RLPN
and is exponentially decreasing in w, the weight of the dual vectors on N . Here since we do
not pay anymore Õ(2s) for the FFT, decoding the new LPN secret but Õ

(
2kaux

)
we can take

larger values for s which themselves gives a smaller support N resulting in much smaller
weight w on N and thus the bias term coming from ⟨eN ,hN ⟩ is much smaller. Of course
there is an additional noise term now which is ⟨eP , eaux⟩, however, all in all the gain we have
by being able to use a much larger s outweighs the additional noise term.

Thus now we have a gain in dimension as we went from sample in dimension s to samples in
dimension kaux but with an added noise ⟨s, eaux⟩+e compared to the original noise e. It turns
out that this new tredeoff between noise and dimension is extremely beneficial. Forgetting
about the fact that eaux comes from a decoding problem, we can intuitively think that this

added noise ⟨s, eaux⟩ acts like a random variable with bias δ
(s)
|eaux| (|s|), namely exponentially

decreasing in |eaux| and |s|. Supposing to simplify that we have access to a code that we can

decode at taux = dGV (s, kaux), each sample has an added noise of the order δ
(s)
taux (|s|) which

increases exponentially when kaux decreases.

6.1.3 The double-RLPN algorithm

We call this new algorithm double-RLPN decoding, since it is based on two successive re-
ductions: first we reduce the problem to sparse-LPN, then we reduce the sparse-LPN to a
plain-LPN problem as explained above. The algorithm consists in the same steps as the RLPN
algorithm but adds this extra reduction step from sparse to plain LPN. Basically we start by
splitting the support in two complementary part P and N and make a bet that |eN | = u.
We compute dual vectors h ∈ C⊥ of low weight on the part N yielding the LPN samples
(hP , ⟨y,h⟩) as in RLPN. We then make our reduction by choosing an auxiliary code Caux of
generator matrix Gaux which we know how to decode efficiently and proceed to compute the
reduced LPN samples (maux, ⟨y,h⟩) of secret ePG⊺

aux obtained by decoding hP onto Caux as
hP = mauxGaux+eaux (where eaux is an error vector of low Hamming weight). This reduced
LPN problem is then solved with the same FFT based solver as in RLPN returning a score
function FL (x) which is expected to be big if x = ePG⊺

aux is the secret of the reduced LPN
problem. We then filter out these candidates x for the secret ePG⊺

aux based on this score
function value. We then proceed from this set of candidates to recover the whole error vector
e by solving for each candidate x two successive smaller decoding problems: on to recover
eP and one to recover eN , depending on if one decoding problem failed this tells us if x was
a false candidate or not.
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6.1.4 Which code to use

In [GJL14] (see its extended version [GJL20]) this compression technique was analyzed when
a perfect code or a juxtaposition of perfect codes was used. Here juxtaposition means a
Cartesian product. The idea is that perfect codes have good covering properties. This allows,
by decoding the sample onto the closest codeword, to maximize the bias. This decoding
was done by precomputing a syndrome table by enumerating the errors. In that regard, the
juxtaposition strategy allows precomputing independently smaller codes, thus mitigating the
cost of the precomputation while only slightly damaging the covering property.

We instantiate our algorithm with a juxtaposition of a constant number of random linear
codes. Note that using random linear codes is essentially as good as using perfect codes
(which only exist for a very limited set of parameters). Instead of referring to the covering
radius of a code, we prefer to refer here to the slightly more natural quantity which is the
distortion level of a code/decoder for a certain channel: we want it as close as possible as
the optimal rate-distortion bound. The reason is that we are not really interested in the
worst-case scenario but rather in the average case. In that sense really using a random linear
code seems like the optimal strategy. For the regime we are interested in this thesis, namely
when solving a decoding problem at constant rate and when the error weight grows linearly
in the length of the code, the parameters of double-RLPN are such that we end up needing to
decode an exponential number of samples (the ambient space is Fs

2 where s = |P|), say 2λs.
Consequently, we only need an amortized time decoder. Essentially we take the juxtaposition
of a constant number b = 1/λ of random linear codes. The fact that each block is of length
λs allows us to conclude that this enumerating step is always smaller than the size of the
list we consider, while the constant nature of the number of blocks allows us to prove that
these codes are as good as random linear codes. In our regime, this strategy incurs only a
polynomial loss compared to the use of a random linear code that we would know how to
decode for free.

Juxtapositing a constant number of random codes could also be used for building good
Locality-Sensitive-Hashing (LSH) function. In particular these are the building blocks behind
recent ISD’s to solve a Near-Collision problem. Currently the provable version of these al-
gorithms, see [Car20] (or alternatively [EKZ21]) use the juxtaposition of o(n) random linear
codes that are decoded by enumerating the codewords. This incurs a superpolynomial loss.

Alternatively, note that in [Car20], it was proposed to use polar codes (which achieve
the same rate-distortion bound as random linear codes) to build an LSH. Moreover, [Car20,
Figure 9.3] provided experimental evidence that using polar codes in this context would only
produce a polynomial overhead. It is very likely, based on those experimental results, that
the polynomial overhead is much smaller than with our construction. However, using polar
codes in our context requires finer analysis (experimental or theoretical) to assess its impact
on the shape of our LPN samples and on the bias of the noise term appearing in the LPN
reduction.

6.1.5 Analysis

We analyze our algorithm in the setting when all the dual vectors of weight w on N are
computed.Our analysis is essentially a generalization of the analysis we made in RLPN and is
made in two steps: first we devise a minimal condition such that our reduction even makes
sense and then count precisely (using an experimentally verified conjecture) the number of
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6. Dual Attack 3.0 : Reducing sparse-LPN to LPN

false candidates we get when our parameters verify these minimal conditions.

6.1.5.1 A minimal condition for our algorithm to make sense

First, the minimal condition comes from the fact that we can show that the bias of the reduced
LPN samples is of the order

δ ≈ δ(n−s)
w (u) δ

(s)
taux (t− u)

which is by the way the bias we would obtain by summing two independent variables of bias

δ
(n−s)
w (u) and δ

(s)
taux (t− u) which are respectively themselves the bias of we would obtain for

each part of the noise by forgetting about the structure. Our intuition is that we must have
at least

N ≈ 1/δ2

LPN samples in order for our reduction to make sense. Importantly this stays valid, up to
polynomial factors, as long as the number of blocks in the juxtaposition code is constant.

6.1.5.2 Counting the number of candidates from this condition

Second, we count, under this simple condition, how much false candidates we have at each
iteration. Similarly, to RLPN our second order concentration bounds on the score function
will be insufficient to bound their number, thus as for RLPN we will need a conjecture to
conclude. This conjecture is some generalization of what we did for RLPN, it is essentially
some exponential strengthening of our second order concentration bounds, this is done by
devising a simple lower bound on the concentration of the score function and conjecturing
that this lower bound is tight. It stems from a key duality formula for the score function
involving the weight enumerator of some coset of C and C⊥aux. Our conjecture is basically
that a false candidate only occurs if these coset codes contains some unusually low weight
codeword. More than simply giving an intuition, this duality formula will be key to showing
experimentally that our conjecture holds. Indeed by making a simple model, as in RLPN, that
the weight enumerators acts like a Poisson variable of right expected value we are able to prove
our conjecture while verifying experimentally that making this model does not change the
distribution of the score function. Interestingly, contrary to RLPN we show that because of the
additional structure coming from the second reduction we can have an exponential number
of false candidates, but we show that in all cases of interest their number is sufficiently small
such that the last checking step never dominates.

6.2 The double RLPN decoder

6.2.1 A generic framework for double-RLPN

We give here the main steps of the algorithm. Basically they are exactly the same as RLPN
at the difference that we add the extra reduction step from sparse to plain LPN and finish
with a slightly more involved procedure to recover the whole error vector e as now the secret
of our reduced LPN samples is some linear combination of eP . Basically now our algorithm
works in 4 step:
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6.2. The double RLPN decoder

1. Compute-LPN-Sample. It computes many dual vectors h ∈ C⊥ of low weight w on N
and stores and returns the list, say L̃, composed of the LPN samples (a, b) = (hP , ⟨y,h⟩)
with secret eP , as described in Eq. (5.1). This procedure is reused from RLPN.

2. Sparse-LPN-to-Plain-LPN(C, N ; w). Takes as input the previous samples and
apply the reduction in the introduction, to produce samples of the form Eq. (6.2) with
secret ePG⊺

aux ∈ Fkaux
2 and outputs these new samples in a list L along with the auxiliary

code Caux with generator matrix Gaux that was used to make the reduction.

3. LPN-Solver. It takes as input the list of LPN samples and outputs a (small) set of
candidates z ∈ Fkaux

2 for the secret of the reduced LPN problem ePG⊺
aux.

4. double-RLPN-Recover-Full-Error. It takes as input the set of candidates, if the
secret ePG⊺

aux is in the set of candidate we expect that this procedures returns the full
error e or it fails.

As in RLPN we make a bet that |eN | = u and iterate this procedure a certain number of
times Niter where Niter is chosen big enough so that the bet is valid as least once.

Algorithm 16 double-RLPN algorithm

Name: double-RLPN
Input: C ∈ C [n, k] , y ∈ Fn

2 , t
Parameter: s, w, u and T,Niter

1: while i = 1 . . . Niter do

2: P
$←{P ⊂ J1, nK : |P| = s} ▷ Hope that eN = u

3: N ← J1, nK \P
4: L̃ ← Create-LPN-Samples(C, N ; w) ▷ Returns some LPN samples of the form

(hP , ⟨y,h⟩)
5: L, Caux ← Sparse-LPN-to-Plain-LPN(L̃; s; kaux; taux) ▷ Returns the reduced LPN

samples of secret ePG⊺
aux

6: S ← LPN-Solver(L ; T ) ▷ Returns a set of candidates for the secret of the LPN
problem given by L, T is a treshold

7: e← double-RLPN-Recover-Full-Error(S, P, N y u) ▷ Returns either ⊥ if
ePG⊺

aux /∈ S but returns e if ePG⊺
aux ∈ S

8: if e ̸= ⊥ then
9: return e

6.2.1.1 Computing the LPN samples

This is done exactly as in RLPN as such we reuse precisely Algorithm 13, which we rewrite
here.
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6. Dual Attack 3.0 : Reducing sparse-LPN to LPN

Algorithm 17 Computing the LPN samples

Name: Create-LPN-Samples
Input: C ∈ C [n, k] , N
Require: A procedure Compute-Dual-Vectors(D;w) which given a linear code D out-

puts a subset of the dual vectors of D of weight w.
Parameter: w
1: If Information− Set

(
C⊥, N

)
= True continue else i ← i + 1 and go to Line 2 of

Algorithm 16 ▷ Check that N is an information set of C⊥. Continue with overwhelming
probability.

2: WN ← Compute-Dual-Vectors(CN ; w) ▷ Returns a subset of dual vectors of CN

which are of weight w
3: W ← {Lift(C⊥,N , hN ) for hN ∈ WN } ▷ Lift those dual vectors hN ∈

(
CN
)⊥

to make
them dual vectors h of C of low weight w on N

4: L̃ ← [(hP , ⟨y,h⟩) for h ∈ W ]
5: return L̃

6.2.1.2 Sparse LPN to Plain LPN

Say we are given a list of LPN samples L̃ = [(a, ⟨a, s⟩+ e)] with a sparse secret s ∈ Fs
2. We

recall here the reduction from sparse− LPN in dimension s to plain LPN in dimension kaux,
smaller than s that was presented in [GJL14]. This requires a family of auxiliary code which
we know how to decode efficiently. Namely we require F a family of [s, kaux] linear code that
we can sample with a randomized procedure Sample-Auxilary-Code(F) which returns
some [s, kaux]-linear auxiliary code Caux under the form of a generator matrix Gaux. It comes
with an efficient decoder Decode-Auxilary(Caux, a ; taux) which for each a ∈ Fs

2, decodes
it onto Caux at distance taux. More precisely it returns a subset E , possibly empty, of errors
which is such that

E ⊂ {eaux ∈ Sstaux : a− eaux ∈ Caux}.

Now the reduction works as follows. We sample a code Caux at random, then, for
each sample (a, b) we decode a onto Caux to obtain E = Decode(Caux, a ; taux). This
allows us, for each eaux ∈ E to construct the reduced samples (maux, b) where maux is
uniquely obtained such that mauxGaux = a − eaux. All in all, this gives the reduced sample
(maux, ⟨maux, sG

⊺
aux⟩+ ⟨eaux, s⟩+ e) with secret sG⊺

aux.
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Algorithm 18 Reducing sparse LPN to plain LPN

Name: Sparse-LPN-to-Plain-LPN
Input: L̃ ▷ L̃ is a list of LPN samples of the form (a, b) where b = ⟨a, s⟩+ e and s ∈ Fkaux

2

Parameter: s, kaux, taux ▷ T is the threshold from which we keep the candidates.
1: Caux ← Sample-Auxilary-Code(F)
2: Gaux ← G (Caux)
3: L ← ∅
4: for (a, b) ∈ L̃ do
5: E ← Decode-Auxilary(Caux,a)▷ Returns a set of error of small weight eaux ∈ Sstaux

s.t a− eaux ∈ Caux
6: for eaux ∈ E do
7: maux is the unique vector such that mauxGaux = a− eaux
8: L.append((maux, b)) ▷ The new reduced LPN
9: return L

6.2.1.2.1 The procedure

6.2.1.2.2 Shape of the reduced samples We have that

Fact 21. When used in Algorithm 16 the output list L of reduced LPN samples is of the form

L = [(maux, ⟨y,h⟩) where mauxGaux = hP − eaux for (h, eaux) ∈H ]

where
H

def
= {(h, eaux) ∈ W × Fs

2 : eaux ∈ Decode-Auxilary(Caux,hP)}.
For (maux, ⟨y,h⟩) ∈ L we have that

⟨y,h⟩ = ⟨ePG⊺
aux,maux⟩+ ⟨eN ,hN ⟩+ ⟨eP , eaux⟩

where eaux is the error vector asssociated to maux and hP .

6.2.1.3 LPN solver

We get our reduced LPN samples in a list L of LPN samples of the form (a, b) and produce
with an FFT the score function whose definition is recalled here.

Definition 37 (LPN score function). Given a list L of samples of the form (a, b) we define
the LPN score function as

FL (x)
def
=

∑

(a,b)∈L

(−1)b−⟨x,a⟩

This LPN score function is in fact computed exactly as in RLPN with a standard FFT.
The only difference from RLPN lies after, in the filtering step where, because we do not have
an apriori knowledge on the weight of the secret anymore as we did for RLPN, we basically
keep any candidate z of Fkaux

2 that is such that FL (z) is superior to a well-chosen threshold
T and store it in a set of ”undecoded candadidates”.

Definition 38 (Set of undecoded candidates). We define the set of undecoded candidates as

S def
= {z ∈ Fkaux

2 : FL (z) ⩾ T}.
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Algorithm 19 The LPN solver

Name: double-RLPN-LPN-Solver
Input: L ▷ L is a list of LPN samples of the form (a, b) where b = ⟨a, s⟩+ e and s ∈ Fkaux

2

Parameter: T ▷ T is the threshold from which we keep the candidates.
1: FL ← FFT-LPN-Solver(L)
2: S ← {z ∈ Fkaux

2 : FL (z) ⩾ T}
3: return S

We have that

Fact 22. Using the same notation as in Fact 21 we have that for z ∈ Fkaux
2 ,

FL (z) =
∑

(h,eaux)∈H
maux :mauxGaux+eaux=hP

(−1)⟨y,h⟩−⟨z,maux⟩.

In particular the score function evalutated on the secret is

FL (ePG⊺
aux) =

∑

(h,eaux)∈H

(−1)⟨eN ,hN ⟩+⟨eP ,eaux⟩

6.2.1.4 Recovering the rest of the error

We are given the set S containing candidates z ∈ Fkaux
2 for the secret, ePG⊺

aux. From those
candidates, we want to recover the whole error e if the secret is in the list of candidate else
it returns fails, namely ⊥. Importantly in our design rationale this step should not dominate
the complexity of double-RLPN: namely it should be exponentially less costly than say the
FFT step. It turns out that the procedure we describe next is sufficient for our purpose.

Recall that the set of undecoded candidates S is composed of candidates z for ePG⊺
aux.

But note that we can recover eP from ePG⊺
aux by solving yet another smaller decoding

problem. Indeed, if our bet is valid then |eP | = t − u, thus recovering eP from ePG⊺
aux is

nothing but decoding at distance t−u the syndrome ePG⊺
aux in the code of parity-check Gaux,

namely C⊥aux. This is done with a procedure Recover-eP(C⊥aux, z, t− u) that we instantiate
later and which is called for each candidate z ∈ S. It returns a subset V ⊂ {x ∈ Sst−u :
xG⊺

aux = z} but in practice essentially all the set is computed. With this, we construct the
set S ′ of decoded candidates x for eP by taking the union of the output of the call of the
previous decoder.

From this set of candidates for eP we proceed to test them and recover eN as in RLPN,
namely using the procedure RLPN-Recover-full-error which we recall here. Note that,
contrary to RLPN our analysis will show that the set S ′ of candidates for eP can be of
exponential size therefore we will need to use some more advanced decoder for this last step.
We choose ISDDumer [Dum89] as it is simple and sufficient for our purpose.
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Algorithm 20 Recovering the rest of the error

Name: double-RLPN-Recover-full-error
Input: C, P, N , Caux, S ▷ S is a list of candidates z ∈ Fkaux

2 for ePG⊺
aux

Parameter: u
1: If |S| > MaxSize then go to Line 1 of Algorithm 16 else continue ▷ MaxSize is an

additional parameter which is here to ensure that we are not in a pathological situation
where the size of S would be much larger than its expected value. MaxSize will be chosen
around nE (|S|)

2: S ′ ← ∅
3: for z ∈ S do
4: V ← Recover-eP(Caux, z, t− u)
5: S ′ ← S ′⋃V
6: return RLPN-Recover-full-error(C, P, N , S, u)

Algorithm 21 Recovering the rest of the error

Name: RLPN-Recover-full-error
Input: C, P, N , S ▷ S is a list of candidates x ∈ Sst−u for eP

Parameter: u
1: for x ∈ S do
2: R← Lift

(
C⊥, N

)

3: y′ ← yN − (yP − x)R
4: z← ISD-Dumer(CN , y′, u) ▷ This is the ISD decoder from [Dum89]
5: if z ̸= ⊥ then
6: Construct e such that eP = x and eN = z
7: return e
8: return ⊥

6.2.2 Choosing a good auxiliary code

6.2.2.1 Juxtaposition code with a constant number of blocks

We devise here a simple family of linear codes and a decoder which essentially achieves the
rate distortion bound for a BSC channel while having an efficient amortized time decoder.
We argue that this is easily done as long as we want to decode an exponential number of
elements in the ambient space. Namely, we state the following.

Proposition 44. Let n, k, t and λ > 0 be a positive constant. There exists a family of linear
codes F of length n and dimension k and some algorithm which is such that given C ∼ U (F),
a list L of at least 2λ n vectors of Fn

2 , each taken uniformly at random, and a decoding distance
t, outputs for each element y ∈ L a set Decode(C, y, t) ⊂ {e ∈ Snt : y − e ∈ C} which is
optimal in the sense that

P (|Decode(C, y, t)| ≠ 0) =
1

poly (n)
min

( (
n
t

)

2n−k
, 1

)

and where the poly (n) term is of the order nO(1/λ) for some universal O(). Lastly, provided
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that
(
n
t

)
/2n−k = poly (n) the expected time and memory complexity of this algorithm are

poly (n) |L| .

We do not provide a complete proof of this proposition because it do not technically
be needed for our purpose but we give the main elements in this section. A very simple
approach to achieve this would be optimal in terms of rate distortion would be to take a
random [n, k]-linear code, enumerate all possible errors of weight t and store their associated
syndrome in a table. Decoding an element of the list onto the code is then simply searching
in this table for a specific syndrome. This algorithm decodes L in amortized time poly (n)
as long as

(
n
t

)
⩽ |L|, or, if t = dGV (n, k) as long as 2n−k < |L|. The idea then, is simply to

take a juxtaposition code with a constant number of blocks b and enumerate all the errors
of weight t

b independently on each part of length t
b . Now, our decoding algorithm works in

amortized time poly (n) as long as
b
√
2n−k < |L| and the constant nature of b allows us to

argue that this error pattern is optimal. As long as is at least |L| > 2λ n for some constant
λ > 0 then there exists a constant b verifying this.

6.2.2.1.1 Definition

Definition 39 (Juxtaposition code). We define the set of juxtaposition codes with b blocks,
and of length n and dimension k, namely Cjuxt [b, n, k], as the set of linear codes C such that
there exists some constituent code C(i) ∈ C

[
n(i), k(i)

]
such that

C = C(1) × C(2) × · · · × C(b)

where we denote implicitly (in b), for each integer v ∈ N its i’th part as:

v(i)
def
=

{
⌊v/b⌋+ 1 if i ⩽ (v mod b)

⌊v/b⌋ else
(6.3)

When C ∈ Cjuxt [b, s, kaux] we denote by C(i) its associated constituent code on the part i.

Fact 23. For v ∈ N we have that v =
∑b

i=1 v
(i). Moreover

Cjuxt [b, n, k] ⊂ C [n, k]

Notation 5. When the context is clear we will implicitly denote the i’th part of a vector

x ∈ Fs
2 relative to the support given by n by x(i) def

= xI where I
def
= J∑i−1

j=1 n
(j),

∑i
j=1 n

(j)K.
In the same manner, given C ∈ Cjuxt [b, n, k] we denote by C(i) its i’th constituent code.

Definition 40 (Set of admissible errors). Let b, n, k, t ∈ N. Let C ∈ Cjuxt [b, n, k] be a
juxtaposition code of length n and dimension k. Let y ∈ Fn

2 , we define the set of admissible
errors as

Decjuxt (C,y, t) def
= {e ∈ Snt :

∣∣∣e(i)
∣∣∣ = t(i) and y(i) − e(i) ∈ C(i), ∀i ∈ J1, bK}.

We have in particular that

Decjuxt (C,y, t) ⊂ {e ∈ Snt : e+ y ∈ C}.
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6.2. The double RLPN decoder

6.2.2.1.2 Optimality of juxtaposition codes We state the following proposition about
the optimality of juxtaposition codes and the associted set of admissible errors and give some
proof elements.

Proposition 45 (Asymptotic optimality of juxtaposition codes decoded on admissible er-
rors). Let n ∈ N growing to infinity and let k, t, b ∈ N be implicit function of n such that
b = O(1). Let C ∼ U

(
Cjuxt [b, n, k]

)
be a uniformly random juxtaposition code of length n

and dimension k. Let y ∼ U (Fn
2 ). We have that

P
(∣∣Decjuxt (C,y, t)

∣∣ ̸= 0
)
=

1

poly (n)
min

( (
n
t

)

2n−k
, 1

)
.

It could be shown by proving the following lemma

Lemma 22. Using the notations of Proposition 45 we have that

E
(∣∣Decjuxt (C,y, t)

∣∣) = 1

2n−k

b∏

i=1

(
n(i)

t(i)

)
,

Var
(∣∣Decjuxt (C,y, t)

∣∣) ⩽ E
(∣∣Decjuxt (C,y, t)

∣∣)+
∑

x∈{0,1}b
x ̸=0 and x ̸=1

b∏

i=1

( (
n(i)

t(i)

)

2n
(i)−k(i)

)xi+1

.

The proof of the proposition then directly follows from applying Byenemé-Chebychev
inequality to

∣∣Decjuxt (C,y, t)
∣∣ and using the following fact.

Fact 24. We use the notation of Proposition 45. Because b = O(1) we have that

1

2n−k

b∏

i=1

(
n(i)

t(i)

)
=

1

poly (n)

(
n
t

)

2n−k
.

6.2.2.1.3 An efficient amortized decoding algorithm Let us now give more precisly
the decoder. We have the syndrome precomputation phase.

Algorithm 22 Pre-compute all syndromes

Name: Juxt-PrecomputeSyndrome
Input: C ∈ Cjuxt [b, n, k] , t
for i ∈ J1, bK do

H(i) ← H
(
C(i)
)

S(i) ← ∅
for e(i) ∈ Sn(i)

t(i)
do

s(i) ← H(i)e(i)

S(i).append(
(
s(i), e(i)

)
)}

S ← {
(
i,S(i)

)
: i ∈ J1, bK}

return S is done in Section 6.3.2 where we verify Conjecture 3 and

Having access to this precomputed hash table one can compute the set of admissible errors
as follows.
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6. Dual Attack 3.0 : Reducing sparse-LPN to LPN

Algorithm 23 Decode with pre-computation

Name: Juxt-Decode
Input: a pointer to S the output of Algorithm 22, y ∈ Fn

2

Output: Decjuxt (C,y, t)
for i ∈ J1, bK do

H(i) ← H
(
C(i)
)

s(i) ← H(i)y(i)

D(i) ← ∅
for e(i) such that

(
s(i), e(i)

)
∈ S(i) do

D(i).append(e(i))
return D ← {e ∈ Fn

2 : e(1), . . . , e(b) ∈ D(1) × . . .D(b)}

Finally we get the following

Algorithm 24 Decoder

Name: Juxt-Decode-List
Input: C ∈ Cjuxt [b, n, k] , t the sub-decoding distances, L a list of vectors of Fn

2

Output: {
(
y, Decjuxt (C,y, t)

)
: y ∈ L} the list L decoded onto C

S ← Juxt-PrecomputeSyndrome(C)
D ← ∅
for y ∈ L do
V ← Juxt-Decode(a pointer to S, y)
D.append((y, V))

return D

Proposition 46. Let n be growing to infinity and let k, t, b be implicit functions of n and
let λ > 0 be a positive constant. Let L be a list of size at least 2λn of vectors taken uniformly
at random in Fn

2 . Then, provided that
(
n
t

)
/2n−k = poly (n) Algorithm 24 with input C, t, L

outputs {
(
y, Decjuxt (C,y, t)

)
: y ∈ L} with time and memory

poly (n) |L| .

The proof is straightforward.

6.2.2.2 DoubleRLPN with juxtaposition codes

In this section we give the instantiation of Algorithm 16 with juxtaposition codes.

Algorithm 3 (DoubleRLPN Algorithm with juxtaposition codes). We define an instantia-
tion of Algorithm 16 where we have an additionnal parameter b ∈ N and where:

• The family F ⊂ C [s, kaux] of auxiliary codes is defined as

F = Cjuxt [b, s, kaux]

• We instantiate the procedure Sample-Auxilary-Code(F) which returns a code Caux
which was chosen uniformly at random in Cjuxt [b, s, kaux], by choosing each of its con-

stituent code C(i)aux ∼ U
(
s(i), k(i)

)
, i.e. each of them is uniformly random [s(i), k(i)]-

linear code.
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6.2. The double RLPN decoder

• After having chosen the code Caux we precompute the table of syndromes with a call to
SyndromeTable← Juxt-PrecomputeSyndrome(Caux; taux). Each call to
Auxilary-Decode(Caux, a; taux) is then replaced with one call to
Juxt-Decode(SyndromeTable, a).

• The Recover-eP(C⊥aux, z, t − u) procedure is some slight adaptation of the previous
decoding Auxilary-Decode procedure and returns the set

{x ∈ Sst−u :
∣∣∣x(i)

∣∣∣ = t(i)aux and x(i)
(
G(i)

aux

)⊺
= z(i), ∀i ∈ J1, bK}

where G
(i)
aux

def
= G

(
C(i)aux

)
.

Note also that the design rationale behind the reduction from sparse-LPN to plain-LPN
is that each of the samples hP gets decoded onto one close codeword of Caux (preferably
the closest), and that in general our algorithm does not gain by decoding on multiple code-
words. However, in our instantiation, we fix the decoding distance and each of the samples
(hP , ⟨y,h⟩) is decoded to the set Decjuxt (Caux,hP , taux), yielding for each h possibly many
reduced plain-LPN samples. We do this only because it makes the analysis slighty simpler
and claim that doing otherwise changes the complexity of our attack by no more than a
polynomial factor. Moreover, it is clear that we have no advantage whatsoever of taking taux
significantly bigger than dGV (s, kaux), that is, all our cases of interest are such that

(
s

taux

)

2s−kaux
⩽ poly (n)

and in this regime we can show that the expected size of Decjuxt (Caux,hP , taux) is poly-
bounded.

Lastly, it is readily seen that the cost of precomputing the syndrome to decode Caux and
precomputing the syndrome to decode C⊥aux as it is done in the procedure Recover-eP are
both upper bounded by some poly (n) 2s/b. As such, taking b = s/kaux is sufficient to make
sure that both these costs do not dominate in front of say the cost of the FFT. All in all we
can show that we have the following.

Proposition 47 (Complexity). Let n ∈ N and let k, t ∈ N and let s, kaux, taux, u, w be some
parameters and Niter, T be the number of iterations and the threshold respectively, all implicit
functions of n. Suppose that

(
s

taux

)
/2s−kaux = poly (n) and choose the number of blocks as

b
def
= ⌈s/kaux⌉. The expected time complexity of Algorithm 3, given as input an instance of

DPG (n, k, t) is

poly (n)


 Niter︸︷︷︸

Number iterations


 Teq︸︷︷︸

Computing the LPN samples

+2kaux︸︷︷︸
FFT

+ E
(∣∣S ′

∣∣)× Tdec︸ ︷︷ ︸
Recovering the rest of the error







where

1. Teq is time complexity of Compute-Short-Vectors.

2. Tdec is the time complexity of [Dum89] to solve DPG (n− s, k − s, u) with probability
1− o(1).
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6. Dual Attack 3.0 : Reducing sparse-LPN to LPN

6.3 Outline of the analysis and conjecture

6.3.1 Outline of the analysis and key quantities

The goal of this section is to introduce the key quantities and the two main steps intervening
in the analysis. We will focus our analysis in the special case when the procedure computing
the dual vectors essentially outputs all vectors of weight w on N . More, to simplify the
discussion we assume in this introductory section that the number of blocks in the auxiliary
code is b = 1 so here really Caux is taken uniformly at random in C [s, kaux], the set of all
[s, kaux] linear codes. We make the full fledge statements later and show that essentially
everything we say remains unchanged as long as b = O(1). The complete and full analysis
(including the proofs) will be made in Section 6.5.3.

Notation 6. The parameters n, k, t, s, u, w, kaux, taux ∈ N are implicit functions of n ∈ N.
The number of blocks is b = 1.

• P and N are any fixed complementary subsets of J1, nK of size s and n−s respectively.

• C is a linear code of length n such that dim (CP) = s and Caux is an [s, kaux]-linear code
and Gaux is any generator matrix of Caux.

• y = e where e ∈ Snt is fixed such that |eN | = u

• The set of decoded dual vectors is

H
def
= {(h, maux) ∈ C⊥ × Fkaux

2 : |hN | = w and |hP +mauxGaux| = taux}.

• The score function is

∀z ∈ Fkaux
2 FL (z)

def
=

∑

(h, maux)∈H

(−1)⟨y,h⟩−⟨maux,z⟩.

This section is composed of the three following subsections, the first giving the main
quantities intervening in the analysis. The second gives a minimal condition on the parameters
to guarantee that the secret ePG⊺

aux of our LPN problem is distinguishable from a bad guess
z ̸= ePG⊺

aux with good probability. This is done by devising a second order concentration
bound on the score function. Last, we devise a lower bound on the probability that z ̸=
ePG⊺

aux is indistinguishable from the secret and conjecture that this lower bound is tight:
this will allow us to estimate the number of false candidates.

6.3.1.1 Key quantities: number of LPN samples and bias of the error

6.3.1.2 Intuition for the result and main constraint

Note that we expect that there are
(
n−s
w

)
/2k−s dual vectors of weight w on N and each of

these dual vectors will be decoded into an expected number of
(

s
taux

)
/2s−kaux codewords.

Lemma 23 (Expected number of LPN samples). The expected number of LPN samples is

E (|H |) =
(
n−s
w

)(
s

taux

)

2k−kaux

where C ∼ UG (n, k) conditioned on the event that dim (CP) = s and Caux ∼ U (s, kaux).
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6.3. Outline of the analysis and conjecture

Let us now give the bias of the LPN samples. Given a decoded dual vector (h, maux) ∈H
we get the following associated reduced LPN sample:

(maux, ⟨y,h⟩) = (maux, ⟨ePG⊺
aux,maux⟩+ ⟨eN ,hN ⟩+ ⟨eP , eaux⟩)

where

eaux
def
= hP +mauxGaux ∈ Sstaux .

Recall that we supposed that

|eN | = u and |eP | = t− u.

Making the approximation that we can forget about the code structure, a rough approximation
for the bias of the error of the previous LPN sample can be obtained with the Piling-up lemma
and supposing that everything is independent and well-distributed

bias
(〈
eN ,h′

N

〉
+
〈
eP , eaux

′〉) = δ(n−s)
w (u) δ

(s)
taux (t− u) where





h′
N ∼ U (Sn−s

w )

eaux
′ ∼ U

(
Sstaux

)

h′
N and eaux

′ are independent

.

So in essence if our LPN sample behaved like a true LPN sample where everything is inde-
pendent and well-distributed we would expect that it is sufficient that the number of LPN
samples considered is greater than the inverse of the bias squared, namely

(
n−s
w

)(
s

taux

)

2k−kaux
=

poly (n)
(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2

so that we could information-theoretically recover the secret ePG⊺
aux. This translates into

the fact that the score function evaluated on the secret FL (ePG⊺
aux) is greater than the

score function FL (z) for any bad guesses z ̸= ePG⊺
aux. This will be our main constraint

on the parameters. Because our LPN samples are not well distributed the analysis is more
complicated.

6.3.1.3 Second-order behavior of the score function

In this section we formalize that the above constraint naturally appears in our analysis.

Lemma 24 (Expected value and variance of the score function on the secret). Let N
def
=(

n−s
w

)(
s

taux

)
/2k−kaux and suppose furthermore that

(
s

taux

)
/2s−kaux ⩽ 1. We have that

E
(
FL (ePG⊺

aux)
)
= Nδ(n−s)

w (u) δ
(s)
taux (t− u) ,

Var
(
FL (ePG⊺

aux)
)
= O(N)

where C ∼ UG (n, k) conditioned on the event that dim (CP) = s and Caux ∼ U (s, kaux).

This lemma allows us to derive the second-order behavior of the score function on the
secret.
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6. Dual Attack 3.0 : Reducing sparse-LPN to LPN

Corollary 9. Under the same conditions and distributions as in Lemma 24 we have that

P
(∣∣∣FL (ePG⊺

aux)−Nδ(n−s)
w (u) δ

(s)
taux (t− u)

∣∣∣ ⩾ n
√
N
)
= O(1/n)

In the same manner, we could also similarly show that the score function evaluated on a
bad guess z ̸= ePG⊺

aux satisfies E
(
FL (z)

)
= 0 and that Var

(
FL (z)

)
= O(N) which allows

us to derive that for any positive function f we have that

P
(∣∣FL (z)

∣∣ ⩾ f(n)
√
N
)
= O(1/f(n)) when z ̸= ePG⊺

aux.

This allows us to show that we can hope to distinguish the secret from a bad guess with
probability 1− o(1) as long as

(
n−s
w

)(
s

taux

)

2k−kaux
∈ ω (1)
(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2 .

This is done by taking the threshold T as

T =
1

2
Nδ(n−s)

w (u) δ
(s)
taux (t− u)

and keeping in the set of candidates S only those elements whose evaluations are above T . As
in RLPN, our intuition is that if this condition is not met (up to polynomial factors), then we
have no usable advantage to distinguish good from bad guesses, and that, depending on the
value of T , the set of candidates S will be either essentially the whole space Fkaux

2 or entirely
empty.

6.3.1.4 A conjecture on the exponential tail of the score function

So now we have our minimal condition to distinguish the secret against a specific bad candidate
z ̸= ePG⊺

aux, but the problem in end is now to quantify our ability to distinguish the secret
from all bad guesses z ∈ Fkaux

2 \ { ePG⊺
aux}. Here our second order concentration bound are

useless as the search space is exponentially big, hence we need an exponential strengthening
of the shape

P
(∣∣FL (z)

∣∣ ⩾ poly (n)
√
N
)
= 2−Ω(kaux).

We are unable to prove so but devise here a lower bound on this probability and conjecture
that this lower bound is tight up to polynomial factors. Due to the linear dependencies
between the quantities involved in our LPN samples, we can determine a sufficient condition
for z to be indistinguishable from the secret ePG⊺

aux.

Lemma 25 (Linearity relation). Let (h, maux) ∈H and let eaux be the associated auxiliary

error, namely eaux
def
= hP +mauxGaux. Let z ∈ Fkaux

2 and let x ∈ Fs
2 be such that xG⊺

aux = z.
For any (r, z) ∈ D(x) we have that

⟨y,h⟩ − ⟨z,maux⟩ = ⟨r, eaux⟩+ ⟨z,hN ⟩ (6.4)

where

D(x) def
= {(r, z) ∈ Fs

2 × Fn−s
2 : r ∈ C⊥aux + x, z ∈ CN + (r+ eP)R+ eN },

R
def
= Lift

(
C⊥, N

)
.
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6.3. Outline of the analysis and conjecture

This lemma is simply a series of rewritings and is proved in Section 6.3.1.4.1. Notably, we
see directly that if D(x) contains a low-weight codeword then ⟨y,h⟩− ⟨z,maux⟩ will be biased
toward 0 and thus FL (z) will be big.

Definition 41 (Weight enumerator of the code D(x)).

N
(x)
j,i

def
= D(x)

⋂
Ssj × Sn−s

i .

More precisely, if z ∈ Fkaux
2 and x ∈ Fs

2 are such that z = xG⊺
aux we have that

E
(
FL (z)

∣∣∣ ∃(r, z) ∈ D(x) : |r| = v1 and |a| = v2

)

= E
(
FL (z)

∣∣Nv1,v2 ̸= 0
)

≈ Nδ(n−s)
w (v2) δ

(s)
taux (v1) .

Now, we recall that from Lemma 24, when the bet on the error is valid we have that for the
secret

E
(
FL (ePG⊺

aux)
)
= N δ(n−s)

w (u) δ
(s)
taux (t− u) .

As such clearly, if v1 = t−u and v2 = u then we expect that z will be mistaken for the secret.
But more generally we expect that this is the case if

δ(n−s)
w (v2) δ

(s)
taux (v1) ≈ δ(n−s)

w (u) δ
(s)
taux (t− u) .

Our conjecture will be that the event that z is mistaken for the secret ePG⊺
aux is overwhelm-

ingly dominated by the event that such a low weight codeword exists. We take a small margin
around these values to account for the usual variation of the score function.

Conjecture 3. If

(
n−s
w

)(
s

taux

)

2k−kaux
∈ Ω


 n8
(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2


 ,

(
s

taux

)

2s−kaux
∈ O(1) (6.5)

then we conjecture that

P
(
FL (xG⊺

aux) ⩾ T
)
∈ Õ

(
P (∃(i, j) ∈ A : Ni,j ̸= 0) + 2−n

)

where we define x ∼ U
(
Fs
2 \ {C⊥aux + eP }

)
and

A def
= {(i, j) ∈ J0, n− sK× J0, sK : δ(n−s)

w (i) δ
(s)
taux (j) ⩾

δ
(n−s)
w (u) δ

(s)
taux (t− u)

n3.2
}

T
def
=

1

2
Nδ(n−s)

w (u) δ
(s)
taux (t− u) .

and where C is distributed as U (n, k) conditioned on the event that dim (CP) = s, and
Caux ∼ U (s, kaux) and where we used the notations of Notation 6.

Remark 20. We verify experimentally this conjecture in Definition 41. We believe however
that the results stay true for a much smaller polynomial than the n8 appearing in the condition.
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6.3.1.4.1 Proof of the linearity relations

Proof of Lemma 25. Let cN ∈ CN and c⊥aux ∈ C⊥aux. We have that

⟨y,h⟩ − ⟨z,maux⟩ = ⟨e,h⟩ − ⟨xG⊺
aux,maux⟩

= ⟨e,h⟩ − ⟨x,mauxGaux⟩
= ⟨e,h⟩ −

〈
x+ c⊥aux,mauxGaux

〉

where in the last line we used the fact that
〈
c⊥aux,mauxGaux

〉
= 0 as mauxGaux ∈ Caux. We

will next use the fact that, by construction, hP = hN R⊺ to write that

⟨e,h⟩ −
〈
x+ c⊥aux,mauxGaux

〉
= ⟨e,h⟩ −

〈
x+ c⊥aux,hP + eaux

〉

=
〈
eP + x+ c⊥aux,hP

〉
+ ⟨eN ,hN ⟩+

〈
x+ c⊥aux, eaux

〉

=
〈
eP + x+ c⊥aux,hP

〉
+ ⟨eN ,hN ⟩+

〈
x+ c⊥aux, eaux

〉

=
〈
eP + x+ c⊥aux,hN R⊺

〉
+ ⟨eN ,hN ⟩+

〈
x+ c⊥aux, eaux

〉

=
〈(

eP + x+ c⊥aux

)
R+ eN ,hN

〉
+
〈
x+ c⊥aux, eaux

〉

=
〈(

eP + x+ c⊥aux

)
R+ eN + cN ,hN

〉
+
〈
x+ c⊥aux, eaux

〉

where in the last line we used the fact that
〈
cN ,hN

〉
= 0 as hN ∈

(
C⊥
)
N

where

(
C⊥
)

N
=
(
CN
)⊥

.

6.3.2 Tail behavior of the score function, verifying the conjecture

The goal of this section is to verify heuristically Conjecture 3 which gives some exponential
concentration bounds for our score function. We generalize the technique devised in RLPN
to our setting here, namely we make a model on the score function FL (z), experimentally
verify that this model does not change the score function’s distribution and then prove that
our conjecture holds under this model.

6.3.2.1 Duality formula

Our main tool, as in RLPN, is a dual formula which is basically the continuity of the discussion
around the conjecture made in Section 6.3.1.4 and which gives basically the individual contri-

bution of each of the weight enumerator N
(x)
i,j to the value of the score function FL (xG⊺

aux).

Proposition 48 (Duality formula for the score function). Using Notation 6 and supposing
furthermore that C is of dimension k we have that for any z ∈ Fkaux

2 and any x ∈ Fs
2 such that

z = xG⊺
aux,

FL (z) =
1

2k−kaux

n−s∑

i=0

s∑

j=0

N
(x)
i,j K

(n−s)
w (i)K

(s)
taux (j) . (6.6)
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Notably, the key quantity N
(x)
i,j is directly related to more standard weight enumerators

of the following random affine codes:

Lemma 26. Let x ∈ Fs
2 we have that

N
(x)
i,j =

Nj(C⊥
aux+x)∑

u=0

Ni

(
CN +

(
r(u) + eP

)
R+ eN

)

where we recall that Ni (C) is the standard weight enumerator of the code C, namely

Ni (C) =
∣∣∣C
⋂
Sni
∣∣∣

and where r(u) denotes the u’th codeword of C⊥aux + x
⋂Ssj .

As in the case of RLPN, here also, we reduce proving our conjecture on the tail distribution
of FL (z) to proving exponential tail bounds on the weight enumerator of the coset codes
considered in the previous lemma, namely bounds of the type

P
(
Ni (C)− E (Ni (C)) ⩾ poly (n)

√
Var (Ni (C))

)
= 2−Ω(n)

which we could not find in the literature.

6.3.2.2 The Poisson model

To contravene this we will make the model that these weight enumerators are Poisson variables
with right expected value, namely we could show that for any fixed u ∈ J1, Nj

(
C⊥aux + x

)
K we

have that

E
(
Nj

(
C⊥aux + x

))
⩽

(
s
j

)

2kaux

(
1 +O

(
2−kaux

))

E
(
Ni

(
CN +

(
r(u) + eP

)
R+ eN

))
=

(
n−s
i

)

2n−k
.

We modelNj

(
C⊥aux + x

)
by a Poisson variable of expected value

(sj)
2kaux

and, for each u we model

Ni

(
CN +

(
r(u) + eP

)
R+ eN

)
by a Poisson variable of expected value

(n−s
i )

2n−k . Additionally, it

will be convenient and simpler for our proof to ask that the variablesNi

(
CN +

(
r(u) + eP

)
R+ eN

)

given by u are independent. All in all, using the fact that the sum of Poisson variable is a
Poisson variable of good expected value, we get the following model for Ni,j .

Model 5 (Poisson Model). Using the distributions in Conjecture 3 we make the model that

N
(x)
i,j ∼ Poisson

(
Nj

(
n−s
i

)

2n−k

)
, where N

(x)
j ∼ Poisson

( (
s
j

)

2kaux

)
.

Now, under Poisson Model Model 5, the following proposition proves Conjecture 3 while
we can show experimentally that it keeps the distribution of the score function unchanged,
see Fig. 6.2.
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Proposition 49. Under Model 5, Conjecture 3 holds.

The proof is made in Section 6.5.2.

0 2,000 4,000 6,000

2−15

2−10

2−5
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T

P
( F

L
(z
)
>
T
)

Modeled distribution
Experimental distribution

Figure 6.2: Experimental validity of the Poisson model (Model 5). We plot the distribution
of the score function FL (z) of double-RLPN that we obtained experimentally against the
modeled distribution of FL (z) under the Poisson model Model 5. Both curve are plotted
using Monte-Carlo method (see Fig. 5.4 for more details). Here n = 60, k = 30, s =
28, kaux = 20, taux = 2, w = 5.

6.3.2.3 Proof of the duality formula

Here we prove Proposition 48. Let us recall that the score function can be rewritten as follows
by using the linearity relation between the dual vectors.

Fact 25. Let C We have for z ∈ Fkaux
2 and any x ∈ Fs

2 such that z = xG⊺
aux that

FL (z) =
∑

hN ∈(CN )
⊥

|hN |=w

∑

eaux∈Ss
taux

hPR⊺+eaux∈Caux

(−1)⟨(x+eP)R+eN ,hN ⟩+⟨x,eaux⟩

Proof of Proposition 48. Starting from Fact 25 we get that

FL (z) =
∑

(hN ,caux)∈(C⊥)
N

×Caux
|hN |=w,|RhN +caux|=taux

(−1)⟨(x+eP)R+eN ,hN ⟩+⟨x,hN R⊺+caux⟩

Therefore,

FL (z) =
∑

(hN ,caux)∈(C⊥)
N

×Caux

f(hN , caux) (6.7)

where

f(hN , caux)
def
= (−1)⟨(x+eP)R+eN ,hN ⟩+⟨x,hN R⊺+caux⟩1{|hN |=w,|hN R⊺+caux|=taux}.
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Using Lemma 1 we have that
(
C⊥
)
N

=
(
CN
)⊥

and thus
((
CN
)⊥ × Caux

)⊥
= CN × C⊥aux.

By using the Poisson formula Proposition 17 together with the fact that dim
(
CN × C⊥aux

)
=

dim
(
CN
)
+ dim

(
C⊥aux

)
= k − kaux, we get

∑

(hN ,caux)∈(CN )
⊥×Caux

f(hN , caux) =
|Caux|
|C|

∑

(cN ,c⊥aux)∈CN ×C⊥
aux

f̂(cN , c⊥aux). (6.8)

Let us compute the right-hand term. By definition of f , it is readily seen that

f̂(y1,y2) =
∑

z1∈Fn−1
2 ,z2∈Fs

2

|z1|=w,|z1R⊤+z2|=taux

(−1)⟨y1,z1⟩+⟨y2,z2⟩(−1)⟨(x+eP)R+eN ,z1⟩+⟨x,z1R⊺+z2⟩

=
∑

z1∈Fn−s
2 :|z1|=w

(−1)⟨y1+(x+eP+y2)R+eN ,z1⟩
∑

z2∈Fs
2:|z1R⊺+z2|=taux

(−1)⟨y2+x,z1R⊺+z2⟩

= K(n−s)
w (|y1 + (y2 + x+ eP)R+ eN |) K(s)

taux (|y2 + x|) .

Plugging this into Equation (6.8) and then into Equation (6.7) concludes the proof.

6.4 Main theorem and results

6.4.1 Main theorem

We are now ready to state the main theorem of this chapter giving the performance of
double-RLPN instantiated with juxtaposition code with a constant number of blocks and
when furthermore all the dual vectors of weight w on N are computed.

Theorem 8. There exists a positive poly-bounded function f such that for any
k, t, s, b, kaux, taux, w, u,Niter, T ∈ N implicit functions of a parameter n ∈ N (n is growing to
infinity) and any procedure Compute-Dual-Vectors that are such that

1. (Computing all the dual vectors)

PD∼UG(n−s, k−s)

(
Compute-Dual-Vectors(D) = D⊥

⋂
Sn−s
w

)
∈ 1− o(1) ,

2. (Linear scaling and constant number of blocks) b =
⌈

s
kaux

⌉
and b ∈ O(1),

3. (Main constraint that we have enough dual vectors)

(
n−s
w

)(
s

taux

)

2k−kaux
∈ Ω


 f(nb)
(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2


 ,

4. (Decoding the auxiliary code below Gilbert-Varshamov)
(

s
taux

)
/2s−kaux ∈ O(1) ,

5. (Outside Krawtchouk root region) u < Root
(
K

(n−s)
w

)
and for all i ∈ J1, bK, (t− u)(i) <

Root
(
K

(s(i))

t
(i)
aux

)
,
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6. (Auxiliary quantities and minor constraints) Niter ∈ Ω

(
f(nb)

(nt)
(n−s

u )( s
t−u)

)

and T = 1
2δ

(n−s)
w (u)

∏b
i=1 δ

(s(i))

t
(i)
aux

(
(t− u)(i)

) (n−s
w )( s

taux
)

2k−kaux
and k − s ∈ ω (1)

then, under Conjecture 3 (and its generalization to the case b ∈ O(1), namely Conjec-
ture 5), there exists an algorithm (Algorithm 3 with the right stoping conditions) that solves
DPG (n, k, t) with probability 1− o(1) in time and memory

Time = Õ
( (

n
t

)
(
n−s
u

)(
s

t−u

)
(
2kaux + Teq + C Tsubdec

))
,

Memory = Õ
((

2kaux +Meq +Msubdec

))
,

where the upper bound for the number of false candidates is given by

C
def
=

[
max

((
s

t−u

)

2kaux
, 1

)
+

(
s

t− u

)
max
(i,j)∈A

( (
n−s
i

)(
s
j

)

2n−k+kaux

)]
max

(
1,

2kaux(
s

t−u

)
)

A def
= {(i, j) ∈ J0, n− sK× J0, sK : δ(n−s)

w (i) δ
(s)
taux (j) ⩾

δ
(n−s)
w (u) δ

(s)
taux (t− u)

n3.2
}

and where Teq, Meq are the expected time and memory complexity of Compute-Dual-Vectors(D, w)
when D ∼ UG (n− s, k − s) and Tsubdec, Msubdec are the time and memory complexity of
ISDDumer [Dum89] to solve DPG (n− s, k − s, u) with probability 1 − o(1). We recall that

δ
(n)
w (t) is defined in Definition 25 and Root

(
K

(n)
w

)
is defined in Definition 26.

We make the full prof of this statement in Section 6.3.2 and the conjecture was verified
experimentally in the previous Section 6.3.2.

6.4.2 Results

6.4.2.1 Time complexity exponent

We give the asymptotic counterpart of the previous theorem in Section 6.5.1. This allows
us to obtain, after some parameter optimization the following Fig. 6.3 giving the complexity
exponent of double-RLPN when decoding at the Gilbert-Varshamov distance. We give more
details on how those curves were obtained in Section 6.5.1. Note that we were careful to
optimize our complexity formula in a simplified setting first by i) overlooking the cost of
checking the false candidates and ii) keeping only the main constraint on the parameters that
we have enough dual vectors. Then, from those optimal parameters, we checked that the
cost of dealing with the candidates did not dominate the complexity and that the additional
constraints were met by our parameters. This allows us to justify that our algorithm performs
essentially as well as if the LPN model was valid. Second, after optimization it turns out that
all our optimal parameters end-up such that taux = dGV (s, kaux).
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Figure 6.3: Asymptotic complexity exponent, relative to the codelength n of some generic
decoders when decoding codes of rate R at the Gilbert-Varshamov distance. The double-RLPN
Genie-Aided variant is an idealized variant obtained by supposing that each dual vector of
weight w on N can be obtained in time poly (n). The state of the art of ISD is given by
[BM18] with our corrected analysis.

6.4.2.2 Memory complexity exponent

We have optimized the time complexity regardless of the memory, thus, our optimized param-
eters are not really representative of the memory complexity of our algorithm. Nevertheless,
the memory complexity of double-RLPN seems significantly higher than recent ISD’s such that
[BJMM12, BM18] for small to mid-range rates but seems to be comparable, and possibly bet-
ter than the aforementioned ISD’s for high rates.
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Figure 6.4: Asymptotic memory complexity exponent, relative to the codelength n of some
generic decoders when decoding codes of rate R at the Gilbert-Varshamov distance. The
asymptotic exponents is obtained by using the same parameters that minimized the time
complexity exponent.

6.5 Appendices

6.5.1 Details about the asymptotic results and optimization

Let us define the asymptotic complexity exponent of double-RLPN.

Remark 21. In the following definition the relative counterpart of the parameters can be seen
as R = k/n, τ = t/n, σ = s/n, ω = w/n, µ = u/n, Raux = kaux/n, τaux = taux/n.

Definition 42 (Asymptotic complexity exponent of double-RLPN). Let αeq and βeq be two
bivariate functions (the time and memory complexity exponents of the procedure computing
the dual vectors). Let R ∈]0, 1[ and τ ∈]0, 1/2[ and let

Param
def
= [σ, ω, µ,Raux, τaux]

be list of non-negative reals such that

1. (Main constraint that we have enough dual vectors)

σ h
(τaux
σ

)
+ (1− σ)h

(
ω

1− σ

)
− (R−Raux) ⩾ −2

(
σκ

(
τaux
σ
,
τ − µ
σ

)
+ (1− σ)κ

(
ω

1− σ ,
µ

1− σ

))
.

2. (Decoding the Auxiliary code below GV)

σh

(
Raux

σ

)
− (σ −Raux) ⩽ 0
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3. (Outside Krawtchouk root region)

µ <
1− σ
2
−
√
ω(1− ω), τ − µ < σ

2
−
√
taux(1− taux)

4. (Valid domain)

σ ⩽ R, τ − σ ⩽ µ ⩽ τ, ω ⩽ 1− σ, Raux ⩽ σ, τaux ⩽ σ

we define the asymptotic time complexity exponent of double-RLPN as

αdouble-RLPN (R, τ : Param;αeq)
def
= −π +max

(
(1− σ)αeq

(
R− σ
1− σ ,

ω

1− σ

)
, Raux,

νcandidate + (1− σ)αISD-Dumer
R− σ
1− σ

µ

1− σ

)
,

and we define the asymptotic memory complexity exponent of double-RLPN as

βdouble-RLPN (R, τ : Param;βeq)

def
= max

(
(1− σ) · βeq

(
R− σ
1− σ ,

ω

1− σ

)
, Raux, (1− σ)βISD-Dumer

R− σ
1− σ

µ

1− σ

)

where

νcandidates
def
= max

(
0, σh

(
τ − µ
σ

)
−Raux, max

(η,ζ)∈A
σ · h2

(
ζ

σ

)

+ (1− σ) · h2
(

η

1− σ

)
− (1−R)

)
+max

(
Raux − σh

(
τ − µ
σ

)
, 0

)

π
def
= h (τ)− σ · h2

(
τ − µ
σ

)
− (1− σ) · h

(
µ

1− σ

)

with

A def
=

{
(η, ζ) ∈ [0, 1− σ]× [0, σ] : σ

[
κ

(
taux
σ
,
τ − µ
σ

)
− κ

(
taux
σ
,
ζ

σ

))
+

(1− σ)
[
κ

(
ω

1− σ ,
µ

1− σ

)
− κ

(
ω

1− σ ,
η

1− σ

)]
⩽ 0

}

where we recall that κ (, ) is defined in Corollary 5 and where αISD-Dumer and βISD-Dumer are
the time and memory complexity exponent of [Dum89] defined in Definition 43.

Proposition 50 (Asymptotic performance of double-RLPN). Let n ∈ N be growing to infin-
ity. For any constants R, τ, σ, ω, µ,Raux, τaux that verify the constraints of Definition 35 and
defining

Param
def
= [σ, ω, µ,Raux, τaux]

and under Conjecture 3 (and its generalization to the case b ∈ O(1), namely Conjecture 5)
we have that
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1. (double-RLPN + Dumer subroutine) there exists an algorithm that solves DPG (n, ⌊Rn⌋ , ⌊τn⌋)
in time and memory respectively

T = Õ
(
2n αdouble-RLPN(R,τ ;Param;αdual−Dumer−routine)

)
, M = Õ

(
2n βdouble-RLPN(R,τ ;Param;βdual−Dumer−routine)

)

where we recall that αdual−Dumer−routine and βdual−Dumer−routine are bivariate functions
defined in Proposition 13.

2. (double-RLPN + BJMM subroutine) under the heuristic that the procedure given in
Proposition 14 outputs all the dual vectors of weight w with probability 1−o(1) then there
exists an algorithm that solves DPG (n, ⌊Rn⌋ , ⌊τn⌋) in time and memory respectively

T = Õ
(
2n αdouble-RLPN(R,τ ;Param;αdual-BJMM-routine)

)
, M = Õ

(
2n βdouble-RLPN(R,τ ;Param;βdual-BJMM-routine)

)

where we recall that αdual-BJMM-routine and βdual-BJMM-routine are bivariate functions de-
fined in Proposition 14.

The curves related to double-RLPN in Fig. 6.3 which expose the complexity exponent of
the algorithm were obtained by optimizing the parameters to minimize the complexity of 1.
and 2. as given by Proposition 50.

Asymptotic complexity exponent of ISD Dumer Lastly, we give now, for complete-
ness the asymptotic complexity exponent of [Dum89] that appears in Definition 42. This
algorithm is exactly using Dumer collision decoder Algorithm 3 inside the framework given
by Algorithm 2 as described in our chapter on ISD’s.

Definition 43 (Complexity exponent of the ISD[Dum89]). Let R ∈]0, 1[ and τ ∈]0, 1/2[ we
define

αISD-Dumer (R, τ)
def
= min

ω,λ

(
π +max

(
R+ λ

2
h2

(
ω

R+ λ

)
, (R+ λ)h2

(
ω

R+ λ

)
− λ

))
,

(6.9)

π
def
= h2(τ)− (1−R− λ)h2

(
τ − ω

1−R− λ

)
− (R+ λ)h2

(
ω

R+ λ

)
, (6.10)

νsol
def
= max (h2 (τ)− (1−R), 0) , (6.11)

βISD-Dumer (R, τ)
def
=
R+ λ

2
h2

(
ω

R+ λ

)
(6.12)

where λ and ω must verify the following constraints:

0 ⩽ λ ⩽ 1−R, max (R+ λ+ τ − 1, 0) ⩽ ω ⩽ min (τ,R+ λ) .

Proposition 51. For any constants R ∈]0, 1[ and τ ∈]0, 1/2[ there exists an algorithm
([Dum89]) that solves DPG (n, ⌊Rn⌋ , ⌊τn⌋) with probability 1−o(1) in time Õ

(
2nαISD-Dumer(R, τ)

)

and memory Õ
(
2nβISD-Dumer(R, τ)

)
.
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6.5.1.1 Optimization

In Fig. 6.3, the curves related to double-RLPN where obtained by fixing the rate R and
the relative decoding distance τ at τGV (R) and minimizing (over σ, ω, µ, Raux, τaux) the
”simplified time complexity” of the algorithm, namely

−π +max

(
(1− σ)αeq

(
R− σ
1− σ ,

ω

1− σ

)
, Raux

)

under the main constraint that we have enough dual vectors, namely:

σ h
(τaux
σ

)
+ (1− σ)h

(
ω

1− σ

)
− (R−Raux) ⩾ −2

(
σκ

(
τaux
σ
,
τ − µ
σ

)
+ (1− σ)κ

(
ω

1− σ ,
µ

1− σ

))

and then checking that the obtained optimal parameters satisfy the other minor constraints
and that the cost of the last recovering step does not dominate compared to, say, the cost of
the FFT.

6.5.2 Proof that the Poisson model imply the conjecture

In this section we prove Proposition 49. Let us rewrite here slightly what we have to prove.
Using our duality formula given in Proposition 48 it is readily seen that we can simply

replace the score function FL appearing in the conjecture by its dual counterpart.

Conjecture 4 (Rewritting of Conjecture 3). For any t, k, s, w, u, kaux, taux ∈ N implicit func-
tions of n ∈ N such that

(
s

taux

)

2s−kaux
∈ O(1) and

(
n−s
w

)(
s

taux

)

2k−kaux
=

ω
(
n8
)

(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2

then we conjecture that

P




s∑

j=0

n−s∑

i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j ⩾

1

2
K(n−s)

w (u)K
(s)
taux (t− u)




= Õ
(
P (∃(i, j) ∈ A : Ni,j ̸= 0) + 2−n

)

where

Nj,i
def
= {(r, z) ∈

(
C⊥aux + x

)
×
(
CN + (r+ eP)R+ eN

)
: |r| = j, |z| = i}

R
def
= Lift

(
C⊥, N

)

A def
= {(i, j) ∈ J0, n− sK× J0, sK : δ(n−s)

w (i) δ
(s)
taux (j) ⩾

δ
(n−s)
w (u) δ

(s)
taux (t− u)

n3.2
}

and where P and N are any fixed complementary subsets of J1, nK of size s and n − s
respectively and C is distributed as U (n, k) conditionned on the event that dim (CP) = s and
Caux ∼ U (s, kaux) and e ∼ U (Snt ) and x is taken uniformly at random in Fs

2 \ {C⊥aux + eP}.

Fact 26. Conjecture 4 is true if and only if Conjecture 3 is true.
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Proof. The proof is straightforward applying the duality formula given in Proposition 48 to
write the score function appearing in the left-hand side of Conjecture 3 and simplifying the
expressions.

As such to prove our main Proposition 49 we only have to prove that the Poisson Model 5
imply Conjecture 4. As for RLPN to prove this proposition we will reduce proving conjecture
Conjecture 4 to proving exponential concentration bound on the weight enumerator of random
linear codes, these concentrations bounds are derived using the Poisson model. As for RLPN
this reduction is done with a key centering trick that we adapt to our case.

Lemma 27 (Centering Lemma.). We have,

s∑

j=0

n−s∑

i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j =

s∑

j=0

n−s∑

i=0

K
(s)
taux (j)K

(n−s)
w (i)

(
Ni,j − VjNi

)

where

Vj
def
=
(
C⊥aux + x

)⋂
Ssj , Ni

def
=

(
n−s
i

)

2n−k
.

Proof. From the orthogonality of Krawtchouk polynomials Proposition 19 we have that

0 =
n−s∑

i=0

K(n−s)
w (i)Ni =

s∑

j=0

Vj K
(s)
taux (j)

n−s∑

i=0

K(n−s)
w (i)Ni =

s∑

j=0

n−s∑

i=0

K(n−s)
w (i)K

(s)
taux (j)Vj Ni.

We have our result by substracting this last term to the equation of the lemma.

With this centering lemma we can rewrite the left-hand side of the probability appearing
in Conjecture 4 by bounding the sum by the absolute value of its component as follows.

Corollary 10. We have,

P




s∑

j=0

n−s∑

i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j ⩾

1

2
K(n−s)

w (u)K
(s)
taux (t− u)


 ⩽

P
(
∃(i, j) ∈ J0, n− sK× J0, sK :

∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j

)

where

Ri,j
def
=

1

2 (n+ 1)2

∣∣∣∣∣
K

(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

∣∣∣∣∣ .

Proof. The proof is straightforward using the centering lemma and the fact that for the sum
to be big at least one of the term must have sufficiently big absolute value and concluding
with a union bound.

We can now state our technical intermediate proposition that basically reduce proving the
conjecture to proving concentration bounds on the weight enumerator of random linear code.
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Proposition 52. (Technical proposition.) If

(
s

taux

)

2s−kaux
∈ O(1) and

(
n−s
w

)(
s

taux

)

2k−kaux
∈ ω

(
n8
)

(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2

then for any (i, j) ∈ A we have that

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j

)
⩽ P (Ni,j ̸= 0) (6.13)

and for any (i, j) /∈ A we have that

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j

)
= O

(
max

v∈J0, MK
P
(∣∣Ni,j − vNi

∣∣ ⩾ n1.1max

(√
vNi, 1

) ∣∣∣∣ Vj = v

)
+ P (Vj ⩾M)

)

(6.14)

where

Vj
def
=

(
s
j

)

2kaux
, M

def
= Vj + n1.1max

(√
Vj , 1

)
. (6.15)

Remark 22. Recall that Ni,j
def
=
∑Vj

u=1N
(u)
i where N

(u)
i

def
= Ni

((
r(u) + eP

)
R+ eN + CN

)

and r(u) is the u’th codeword of weight j of C⊥aux + x. From this, we could show we that

EC,Caux,x (Ni,j | Vj = v) = v Ni (1 + o(1))

and that Vj is a good approximation of the expected value of Vj. As such, Equation (6.14) in
the previous proposition can also really be seen as a concentration inequality.

We prove this technical lemma just after. Note that this technical lemma directly yield
our result.

Proof of Proposition 49. Recalling, from Fact 26 we only have to prove that the Poisson
model imply Conjecture 4. Let us prove that. Applying successively Corollary 10 and the
technical Proposition 52 we get that

P




s∑

j=0

n−s∑

i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j ⩾

1

2
K(n−s)

w (u)K
(s)
taux (t− u)




⩽ P
(
∃(i, j) ∈ A :

∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j

)
+ P

(
∃(i, j) /∈ A :

∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j

)

⩽ P (∃(i, j) ∈ A : Ni,j ̸= 0)

+
∑

(i,j)/∈A

O
(

max
v∈J0, MK

P
(∣∣Ni,j − vNi

∣∣ ⩾ n1.1max

(√
vNi, 1

) ∣∣∣∣ Vj = v

)
+ P (Vj ⩾M)

)
.

The first term appearing in the last inequality is exactly the first term in the right-hand side
of Conjecture 4. We only have left to prove that

∑

(i,j)/∈A

O
(

max
v∈J0, MK

P
(∣∣Ni,j − vNi

∣∣ ⩾ n1.1max

(√
vNi, 1

) ∣∣∣∣ Vj = v

)
+ P (Vj ⩾M)

)
= Õ

(
2−n

)
.

(6.16)
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This is a consequence of the Poisson model along with Lemma 21 that we devised in the
previous chapter and that states that if X ∼ Poisson (λ) then

P
(
|X− λ| > n1.1max

(√
λ, 1
))

= 2−ω(n). (6.17)

First, recalling using the Poisson Model 5 and because Ni,j is a sum of Vj terms, each of
expected value Ni we have that (Ni,j |Vj = v) ∼ Poisson

(
vNi

)
thus

max
v∈J0, MK

P
(∣∣Ni,j − vNi

∣∣ ⩾ n1.1max

(√
vNi, 1

) ∣∣∣∣ Vj = v

)
= O

(
2−n

)
. (6.18)

Second, recalling that

M
def
= Vj + n1.1max

(√
Vj , 1

)

and that under the Poisson Model 5, Vj ∼ Poisson
(
Vj
)
, we have that

P (Vj ⩾M) = P
(
Vj − Vj ⩾ n1.1max

(√
Vj

))
= O

(
2−n

)
. (6.19)

Finally, plugging Eq. (6.19) and Eq. (6.18) into the left hand-side of Eq. (6.16) yield the
right-hand side of the equality. Hence the result is proved.

6.5.2.1 Proof of the technical proposition

We only have left to prove the technical Proposition 52. The proof of this statement will rely
on the following lemma that allows us to relate Ri,j appearing in the right-hand side of our
probabilities to the expected value of the weight enumerator the related codes.

Lemma 28. If the parameters are such that

(
n−s
w

)(
s

taux

)

2k−kaux
=

ω
(
n8
)

(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2 and

(
s

taux

)

2s−kaux
= O(1) (6.20)

then we have that

(
K

(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

)2

= ω
(
n8
)
Nimax

(
Vj , 1

)

where we recall that

Ni
def
=

(
n−s
i

)

2n−k
, Vj

def
=

(
s
j

)

2kaux
.

Proof. First recalling that δ
(n−s)
w (u)

def
= K

(n−s)
w (u)

(n−s
w )

we have, rewriting slightly the first term of

Eq. (6.20) we have that

(
K

(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

)2

= ω
(
n8
) 2k−kaux

(
s

taux

)(
n−s
w

)
(
K

(n−s)
w (i)K

(s)
taux (j)

)2 . (6.21)
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First ,let us lower bound 1(
K

(n−s)
w (i)

)2 . From the orthonormality relations of Krawtchouk

polynomials Proposition 19 we have that

n−s∑

v=0

(
n− s
v

)(
K(n−s)

w (v)
)2

=

(
n− s
w

)
2n−s,

and thus, as the previous sum is composed of positive terms, we that

1
(
K

(n−s)
w (i)

)2 ⩾

(
n−s
i

)
(
n−s
w

)
2n−s

. (6.22)

Similarly for 1(
K

(s)
taux

(j)
)2 we get that

1
(
K

(s)
taux(j)

)2 ⩾

(
s
j

)
(

s
taux

)
2s
.

Furthermore, from Definition 24 we can also deduce the following inequality

(
K

(s)
taux (j)

)2
⩽

(
s

taux

)2

.

Combining the last two equations we get that

1
(
K

(s)
taux(j)

)2 ⩾ min

( (
s
j

)
(

s
taux

)
2s
,

1
(

s
taux

)2

)
. (6.23)

Finally, by using Equation (6.22) and (6.23) we get

2k−kaux
(

s
taux

)(
n−s
w

)
(
K

(n−s)
w (i)K

(s)
taux (j)

)2 ⩾ 2k−kaux

(
s

taux

)(
n− s
w

) (
n−s
i

)
(
n−s
w

)
2n−s

min

( (
s
j

)
(

s
taux

)
2s
,

1
(

s
taux

)2

)

=

(
n−s
i

)

2n−k
min

( (
s
j

)

2kaux
,

2s−kaux
(

s
taux

)
)

=

(
n−s
i

)

2n−k
min

( (
s
j

)

2kaux
,Ω (1)

)
Eq. (6.20)

= Nimin
(
Vj ,Ω (1)

)
.

Plugging this into Eq. (6.21) completes the proof.

We are now ready to prove the technical statement that we recall here.

Proposition 52. (Technical proposition.) If

(
s

taux

)

2s−kaux
∈ O(1) and

(
n−s
w

)(
s

taux

)

2k−kaux
∈ ω

(
n8
)

(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2
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then for any (i, j) ∈ A we have that

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j

)
⩽ P (Ni,j ̸= 0) (6.13)

and for any (i, j) /∈ A we have that

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j

)
= O

(
max

v∈J0, MK
P
(∣∣Ni,j − vNi

∣∣ ⩾ n1.1max

(√
vNi, 1

) ∣∣∣∣ Vj = v

)
+ P (Vj ⩾M)

)

(6.14)

where

Vj
def
=

(
s
j

)

2kaux
, M

def
= Vj + n1.1max

(√
Vj , 1

)
. (6.15)

Proof of Proposition 52. We prove the previous equality for each case: (i, j) ∈ A or (i, j) /∈ A.
First note that A can directly be re-written from its definition given in Conjecture 4 as

A def
=

{
(i, j) ∈ J0, n− sK× J0, sK,

∣∣∣∣∣
K

(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

∣∣∣∣∣ ⩽ n3.2

}
.

Case 1: Here we suppose that (i, j) ∈ A. Let us prove Equation (6.13). Using the law of
total probability we have that

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j

)
⩽ P (Ni,j ̸= 0) + P

(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j , Ni,j = 0
)
.

As (i, j) ∈ A,
P (Ni,j ̸= 0) = Õ

(
max

(i∗,j∗)∈A
P (Ni∗,j∗ ̸= 0)

)

we only have left to show that:

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j , Ni,j = 0
)
= Õ

(
max

(i∗,j∗)∈A
P (Ni∗,j∗ ̸= 0) + 2−n

)
.

We now show the previous equation, by proving that,

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j , Ni,j = 0
)
= Õ

(
2−n

)
. (6.24)

We have:

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j , Ni,j = 0
)
= P

(
Vj Ni ⩾ Ri,j

)
(we used that Vj , Ni ⩾ 0)

= P
(
Vj ⩾

Ri,j

Ni

)

= P
(
Vj − Vj ⩾

Ri,j

Ni

− Vj
)

⩽ P
(∣∣Vj − Vj

∣∣ ⩾ Ri,j

Ni

− Vj
)
.

We only have to show that for n big enough we have

Ri,j

Ni

− Vj ⩾ n1.1max

(√
Vj , 1

)
. (6.25)
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Let us prove Equation (6.25). By definition of Ri,j in Corollary 10 and using Lemma 28 we
have that

R2
i,j =

1

4 (n+ 1)4

(
K

(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

)2

=
1

4 (n+ 1)4
ω
(
n8
)
Nimax

(
Vj , 1

)

= f(n)max
(
Ni Vj , Ni

)
(6.26)

where f(n) = ω
(
n4
)
. Therefore,

R2
i,j

Ni
2

1

n2.4max
(
Vj

2
, 1
) =

f(n)max
(
Ni Vj , Ni

)

n2.4 Ni
2
max

(
Vj

2
, 1
)

=
f(n)max

(
Vj

Ni
, 1
Ni

)

n2.4 max
(
Vj

2
, 1
)

=





1
n2.4 f(n)max

(
1

NiVj
, 1

NiVj
2

)
if Vj > 1

1
n2.4 f(n)max

(
Vj

Ni
, 1
Ni

)
if Vj ⩽ 1

⩾
1

n2.4
f(n)min

(
1

NiVj
,
1

Ni

)

=
1

n2.4
f(n)

max
(
NiVj , 1Ni

)

=
1

n2.4
f(n)2

R2
i,j

(By Equation (6.26))

=
ω
(
n5.6

)

R2
i,j

(f(n) = ω
(
nα+4

)
)

= ω(1) (6.27)

where in the last line we used the fact that (i, j) ∈ A: by definition,

Ri,j =
1

2 (n+ 1)2

∣∣∣∣∣
K

(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

∣∣∣∣∣ ⩽
1

2 (n+ 1)2
n3.2

and thus

1

R2
i,j

⩾
2 (n+ 1)2

n3.2
.

Finally, Equation (6.27) shows that for n big enough

Ri,j

Ni

⩾ n1.2max
(
Vj , 1

)
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And as such, for n big enough

Ri,j

Ni

− Vj ⩾ n1.1max
(
Vj , 1

)

⩾ n1.1max

(√
Vj , 1

)

which proves Equation (6.25). Therefore we have just proved Equation (6.13) in the case
where (i, j) ∈ A.

Case 2: . Here we suppose that (i, j) /∈ A. Let us prove Equation (6.14) that is prove that:

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j

)
= O

(
max

v∈J0, MK
P
(∣∣Ni,j − vNi

∣∣ ⩾ n1.1max

(√
vNi, 1

) ∣∣∣∣ Vj = v

)
+ P (Vj ⩾M)

)
.

By the law of total probability we have that

PC,Caux,x
(∣∣Ni,j − VjNi

∣∣ > Ri,j

)
=

M∑

v=0

P
(∣∣Ni,j − VjNi

∣∣ > Ri,j |Vj = v
)
P (Vj = v)

+ P
(∣∣Ni,j − VjNi

∣∣ > Ri,j |Vj > M
)
P (Vj > M)

⩽ max
v∈J0, MK

P
(∣∣Ni,j − v Ni

∣∣ > Ri,j |Vj = v
)
+ P (Vj > M) .

Now, to prove Eq. (6.14), we only have left to prove that for any v ∈ J0,MK and for n big
enough we have that

n1.1max

(√
v Ni, 1

)
⩽ Ri,j . (6.28)

Let us show it. Let v ∈ J0, MK. Using the definition

M
def
= Vj + n1.1max

(√
Vj , 1

)

we get that

n2.2max
(
v Ni, 1

)
⩽ n2.2max

(
M Ni, 1

)

⩽ n2.2max

(
Vj Ni + n1.1Nimax

(√
Vj , 1

)
, 1

)

⩽ max

(
2 n2.2 Vj Ni, 2 n

3.3Ni

√
Vj , 2 n

3.3Ni, n
2.2

)

To show Equation (6.28), we only have left to prove that, for n big enough, each term in
the previous maximum is smaller than R2

i,j . First let us recall that by definition of Ri,j in
Corollary 10 and from Lemma 28,

R2
i,j ∈ ω

(
max

(
n4Ni Vj , n

4Ni

))
.
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For n big enough we have that:

2 n2.2 Vj Ni ⩽ n4Ni Vj ⩽ R2
i,j ,

2 n3.3Ni

√
Vj ⩽

{
n4Ni ⩽ R2

i,j when Vj ⩽ 1

n4Ni Vj ⩽ R2
i,j when Vj > 1

,

2 n3.3 Ni ⩽ n4Ni ⩽ R2
i,j ,

n2.2 ⩽ R2
i,j .

Where in the last equation we used the fact that (i, j) /∈ A, thus Ri,j ⩾ n3.2

2(n+1)2
and thus

R2
i,j ⩾ n2.3 for n big enough. We have shown that

n2.2max
(
v Ni, 1

)
⩽ R2

i,j

and thus we have shown Equation (6.28).

6.5.3 Proof of the main theorem

Here we prove our main Theorem 8. We refer the reader to Section 6.3 for the rationale
behind our proof. Note that now we make the proof in the general case when the number of
blocks is b = O(1). We recall that each sample hP is decoded using the following set

Decjuxt (Caux,hP , taux)
def
= {eaux ∈ Sstaux : ∀i ∈ J1, bK, e(i)aux ∈ Ss

(i)

t
(i)
aux

and h
(i)
P − e(i)aux ∈ C(i)aux}.

And we recall that e
(i)
P refers to the projection of eP on the part of the support given by the

i’th constituent code of Caux = C(1)aux×· · ·×C(i)aux×· · ·×C(b)aux (see Definition 39 and Notation 5).
Notably the noise of our LPN samples is now

⟨eN ,hN ⟩+ ⟨eP ,hP⟩ = ⟨eN ,hN ⟩+
b∑

i=1

〈
e
(i)
P , e(i)aux

〉
.

The bias of this noise thus finely depends on the weight of eP on each of its part. To that
extent we make, in addition to the bet that |eN | = u, the bet that for i ∈ J1, bK we have

that e
(i)
P is of typical weight ((t− u)/b) say equal to (t− u)(i). As long as b ∈ O(1) this only

incurs a polynomial loss in the probability that the bet is verified and we will show later that

the bias of
∑b

i=1

〈
e
(i)
P , e

(i)
aux

〉
in that case also polynomially relates to δ

(s)
taux (t− u) (the bias in

the case b = 1).

Lemma 29. There exists a positive poly-bounded function f such that

P

(
” |eN | = u

b∧

i=1

∣∣∣e(i)P

∣∣∣ = (t− u)(i)”
)

⩾
1

f(nb)
P (|eN | = u)

where P and N are fixed complementary subsets of J1, nK and e ∼ U (Snt ).

All in all we will state our propositions using the following notation that represents the
quantities encountered in a ”good” iteration of double-RLPN.
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Notation 7. When n, k, t, s, u, w, kaux, taux, b ∈ N are parameters and C is a linear code of
length n such that dim (CP) = s and Caux ∈ U

(
Cjuxt [b, s, kaux]

)
and Gaux is a generator

matrix of Caux we denote by:

• P and N are any fixed complementary subsets of J1, nK of size s and n−s respectively.

• y = e where e ∈ Snt is any fixed vector such that the bet is valid

|eN | = u and
∣∣∣e(i)P

∣∣∣ = (t− u)(i) ∀i ∈ J1, bK

• The set of decoded dual vectors is defined as

H
def
= {(h, maux) ∈ C⊥×Fkaux

2 : |hN | = w and
∣∣∣(hP +mauxGaux)

(i)
∣∣∣ = t(i)aux∀i ∈ J1, bK}.

• The score function is defined as

∀z ∈ Fkaux
2 FL (z)

def
=

∑

(h, maux)∈H

(−1)⟨y,h⟩−⟨maux,z⟩.

• The set of undecoded and decoded candidates are respectively:

S def
= {z ∈ Fkaux

2 : FL (z) > T}, S ′ def=
⋃

z∈S
Decjuxt

(
C⊥aux, z, t− u

)

Proposition 53. (Second-order behavior of the score function) For any k, t, s, u, w, kaux, taux, b ∈
N implicit functions of n ∈ N such that

N ∈ ω
(
nb+1

)

δ2
and Naux ∈ O(1) and b ∈ O(1)

and such that u < Root
(
K

(n−s)
w

)
and for all i ∈ J1, bK (t− u)(i) < Root

(
K

(s(i))

t
(i)
aux

)
then

P
(
FL (ePG⊺

aux) ⩾
1

2
Nδ

)
= 1− o(1)

where

N
def
= NeqNaux, Neq

def
=

(
n−s
w

)

2k−s
, Naux

def
=

∏b
i=1

(s(i)
t
(i)
aux

)

2s−kaux
, δ

def
= δ(n−s)

w (u)
b∏

i=1

δ
(s(i))

t
(i)
aux

(
(t− u)(i)

)

and where C is distributed according to UG (n, k) conditioned on the event that dim (CP) = s
and Caux ∼ U

(
Cjuxt [b, s, kaux]

)
and where the other fixed quantities are defined in Notation 7.

We prove this technical proposition in Section 6.5.3.2.

Notation 8. From now on the threshold T is chosen as

T
def
=

1

2
δN
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Using basic properties of Krawtchouk polynomials we can polynomially relate the quan-
tities appearing in Proposition 53 from the case b ∈ O(1) to the case b = 1.

Lemma 30 (Relating the bias to the case b = 1). There exists a positive poly-bounded function
f1 such that for any k, t, s, u, taux, b ∈ N implicit functions of n ∈ N such that

u < Root
(
K(n−s)

w

)
and ∀i ∈ J1, bK (t− u)(i) < Root

(
K

(s(i))

t
(i)
aux

)

then we have that

δ ∈ Ω

(
1

f1(nb)
δ(n−s)
w (u) δ

(s)
taux (t− u)

)
,

Naux ∈ Ω

(
1

f1(nb)

(
s

taux

)

2s−kaux

)
,

N ∈ Ω

(
1

f1(nb)

(
n−s
w

)(
s

taux

)

2k−kaux

)
.

where δ,Naux, N are defined in Proposition 53.

Proof. Recalling that by definition

v(i)
def
=

{
⌊v/b⌋+ 1 if i ⩽ (v mod b)

⌊v/b⌋ else
(6.29)

and using the condition that we are outside the root region of the Krawtchouk polynomials
and Corollary 5 we have that

δ
(s(i))

t
(i)
aux

(
(t− u)(i)

)
∈ Ω̃

(
b

√
δ
(s)
taux (t− u)

)
.

The other equalities are straightforward.

Consequently it is readily seen that we have the following corollary giving that eP is in
the final set of decoded candidates S ′ with good probability.

Corollary 11. There exists a positive poly-bounded function f such that for any k, t, s, u, w, kaux, taux, b ∈
N are implicit functions of n ∈ N such that

(
n−s
w

)(
s

taux

)

2k−kaux
∈ Ω


 f(nb)
(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2


 and

(
s

taux

)

2s−kaux
∈ O(1) and b ∈ O(1)

and such that u < Root
(
K

(n−s)
w

)
and for all i ∈ J1, bK (t− u)(i) < Root

(
K

(s(i))

t
(i)
aux

)
then

P
(
eP ∈ S ′

)
= 1− o(1)

where the threshold is chosen as T
def
= 1

2Nδ and where the distributions are specified by Propo-
sition 53.
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Proposition 54. (Expected number of candidates when b = 1.) For any k, t, s, u, w, kaux, taux, b ∈
N implicit functions of n ∈ N such that

(
n−s
w

)(
s

taux

)

2k−kaux
∈ ω

(
n8
)

(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2 and

(
s

taux

)

2s−kaux
∈ O(1) and b = 1

we have, under Conjecture 3, that

E
(∣∣S ′

∣∣) = Õ(C)

where

C
def
=

[
max

((
s

t−u

)

2kaux
, 1

)
+

(
s

t− u

)
max
(i,j)∈A

( (
n−s
i

)(
s
j

)

2n−k+kaux

)]
max

(
1,

2kaux(
s

t−u

)
)

and where C is distributed according to U (n, k) conditioned on the event that dim (CP) = s
and Caux ∼ U

(
Cjuxt [b, s, kaux]

)
where all the other quantities are defined in Notation 7 and

where we recall that

A def
= {(i, j) ∈ J0, n− sK× J0, sK : δ(n−s)

w (i) δ
(s)
taux (j) ⩾

δ
(n−s)
w (u) δ

(s)
taux (t− u)

n3.2
}.

We prove this proposition in Section 6.5.3.3.

Remark 23. We believe that the term max

(
1, 2kaux

( s
t−u)

)
appearing at the end of E (|S ′|) could

be deleted. We only need it to be able to reuse some of the proofs of [CDMT24] but other than
that it is in fact artificial. Moreover, in practice, for our asymptotic parameters of interest it
will always be equal to 1.

Conjecture 5 (Generalization of Conjecture 3 + Proposition 54 to the case b ∈ O(1)). We
conjecture that there exists a positive poly-bounded function f such that for any k, t, s, u, w, kaux, taux, b ∈
N implicit functions of n ∈ N such that

(
n−s
w

)(
s

taux

)

2k−kaux
∈ ω

(
f(nb)

)
(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2 and

(
s

taux

)

2s−kaux
∈ O(1) and b ∈ O(1)

we have that
E
(∣∣S ′

∣∣) = Õ(C)
where C is distributed according to U (n, k) conditioned on the event that dim (CP) = s and
Caux ∼ U

(
Cjuxt [b, s, kaux]

)
and where C is defined in Proposition 54.

6.5.3.1 Proof of the main theorem

Proof of the main theorem. The function f in Theorem 8 is the maximum of all the functions
appearing in the previous propositions and lemmas. By the assumptions on the parameters of
Theorem 8 clearly there exists with probability 1− o(1) an iteration such that dim (CP) = s

and such that the fine bet is valid, namely such that |eN | = u and
∣∣∣e(i)P

∣∣∣ = (t−u)(i)∀i ∈ J1, bK
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and such that the procedure computing the set of dual vectors outputs all dual vectors of
weight w on N . In such an iteration, we have, using Proposition 53 that ePG⊺

aux ∈ S with
probability 1 − o(1). This automatically implies that eP ∈ S ′ (this is due to the decoder of
C⊥aux defined in Algorithm 3 and the fact that the fine bet on the error weight distribution is
valid). Finally, because ISD-DUMER solves DPG (n− s, k − s, u) with probability 1− o(1),
the whole error e is outputted by the algorithm. Last, for the complexity of the algorithm,
there exists a positive poly-bounded function g such that stopping an iteration if |S ′| is bigger
than gC (where C is defined in Proposition 54) allows us to ensure that the algorithm has
the claimed complexity while not damaging the probability of success. In the case b = 1,
we obtain this with Proposition 54 and in the case where b ∈ O(1), this result is given by
Conjecture 5.

6.5.3.2 Proof of the second-order concentration bounds

Let us prove our concentration bound, we recall Proposition 53 here.

Proposition 53. (Second-order behavior of the score function) For any k, t, s, u, w, kaux, taux, b ∈
N implicit functions of n ∈ N such that

N ∈ ω
(
nb+1

)

δ2
and Naux ∈ O(1) and b ∈ O(1)

and such that u < Root
(
K

(n−s)
w

)
and for all i ∈ J1, bK (t− u)(i) < Root

(
K

(s(i))

t
(i)
aux

)
then

P
(
FL (ePG⊺

aux) ⩾
1

2
Nδ

)
= 1− o(1)

where

N
def
= NeqNaux, Neq

def
=

(
n−s
w

)

2k−s
, Naux

def
=

∏b
i=1

(s(i)
t
(i)
aux

)

2s−kaux
, δ

def
= δ(n−s)

w (u)
b∏

i=1

δ
(s(i))

t
(i)
aux

(
(t− u)(i)

)

and where C is distributed according to UG (n, k) conditioned on the event that dim (CP) = s
and Caux ∼ U

(
Cjuxt [b, s, kaux]

)
and where the other fixed quantities are defined in Notation 7.

The main technical lemma that we will use here is the following giving the first two
moments of the score function.

Lemma 31. (Main technical lemma.) For any k, t, s, u, w, kaux, taux, b ∈ N are implicit func-
tions of n ∈ N we have that

E
(
FL (ePG⊺

aux)
)
= N δ

Var
(
FL (ePG⊺

aux)
)
= O

(
nb+1 N max (1, Naux)

)

where the quantities and distributions are defined in Proposition 53.

Remark 24. We believe that the term nb+1 appearing in the variance is much more reasonable
and is rather some O

(
2b
)
in the constant rate regime.

This allows us to prove our main statement.
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Proof of Proposition 53. Suppose that the parameters verify the constraints of the proposi-
tion, namely that

N ∈ ω
(
nb+1

)

δ2
and Naux ∈ O(1) .

We have that

P
(
FL (ePG⊺

aux) ⩽
1

2
Nδ

)
⩽ P

(∣∣FL (ePG⊺
aux)−Nδ

∣∣ ⩾ 1

2
Nδ

)

⩽ P

(
∣∣FL (ePG⊺

aux)−Nδ
∣∣ ⩾ 1

2

Nδ√
Var (FL (ePG⊺

aux))

√
Var (FL (ePG⊺

aux))

)

Now using the expression of the variance given in the previous Lemma 31 we have that

1

2

Nδ√
Var (FL (ePG⊺

aux))
= Ω

(
Nδ√

nb+1N max (1, Naux)

)

= ω (1) .

where in the last line we use the fact that the parameters verify the constraints. Applying
Byenemé-Chebychev we get that

P
(
FL (ePG⊺

aux) ⩽
1

2
Nδ

)
= o(1)

and thus

P
(
FL (ePG⊺

aux) ⩾
1

2
Nδ

)
= 1− o(1)

which yields our result.

6.5.3.2.1 Moments of the score function Here we prove Lemma 31 that we recall
here.

Lemma 31. (Main technical lemma.) For any k, t, s, u, w, kaux, taux, b ∈ N are implicit func-
tions of n ∈ N we have that

E
(
FL (ePG⊺

aux)
)
= N δ

Var
(
FL (ePG⊺

aux)
)
= O

(
nb+1 N max (1, Naux)

)

where the quantities and distributions are defined in Proposition 53.

We recall for convenience two lemmas we will be usefull to prove the proposition. We
recall here the distribution appearing in the previous expression and which will

Lemma 32 (Distribution of some related quantities). For any k, t, s, u, w, kaux, taux, b ∈ N
implicit functions of n ∈ N we have that

R ∼ U
(
Fs×(n−s)
2

)
, (6.30)

(
CN
)⊥
∼ UH (n− s, n− k) , (6.31)

R and CN are independent. (6.32)

where R
def
= Lift

(
C⊥, N

)
and where the other quantities are defined in Proposition 53.
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Proof. This is exactly Proposition 38.

This allows us to get the following lemma

Lemma 33. We have that

E
(
FL (ePG⊺

aux)
)
= Nδ,

Var
(
FL (ePG⊺

aux)
)
⩽ N


1 +

∑

c∈{0,1}b : c ̸=0

b∏

i=1




(s(i)
t
(i)
aux

)

2s
(i)−t

(i)
aux




ci


where the quantities are defined in Proposition 53.

Proof. Let us first compute the expected value. Recall that we have that

|eN | = u,
∣∣∣e(1)P

∣∣∣ = (t− u)(1) , · · · ,
∣∣∣e(b)P

∣∣∣ = (t− u)(b) (6.33)

We will show that
E
(
FL (ePG⊺

aux)
)
= N δ.

Rewritting the score function we have that

F (ePG⊺
aux)

=
∑

hN ∈Sn−s
w

∑

e
(1)
aux∈Ss(1)

t
(1)
aux

· · ·
∑

e
(b)
aux∈Ss(b)

t
(b)
aux

(−1)⟨eN ,hN ⟩

[
b∏

i=1

(−1)
〈
e
(i)
P ,e

(i)
aux

〉]
1
hN ∈(CN )

⊥

b∏

i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

(6.34)

By linearity of the expected value we have that

E
(
FL (ePG⊺

aux)
)
=

∑

hN ∈Sn−s
w

∑

e
(1)
aux∈Ss(1)

t
(1)
aux

· · ·
∑

e
(b)
aux∈Ss(b)

t
(b)
aux[

(−1)⟨eN ,hN ⟩
b∏

i=1

(−1)
〈
e
(i)
P ,e

(i)
aux

〉] [
E

(
1
hN ∈(CN )

⊥

b∏

i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)]

(6.35)

Now from the independence of the indicator variable we get that

E

(
1
hN ∈(CN )

⊥

b∏

i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)
= E

(
1
hN ∈(CN )

⊥

) b∏

i=1

E
(
1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)

= P
(
hN ∈

(
CN
)⊥) b∏

i=1

P
(
e(i)aux + (hN R⊺)(i) ∈ C(i)aux

)
.

(6.36)

From Lemma 32 we have that CN ∼ UG (n− s, k − s) thus using Proposition 5 we get

P
(
hN ∈

(
CN
)⊥)

=
1

2k−s
.
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From Lemma 32 we have that for each i ∈ J1, bK, e(i)aux + (hN R⊺)(i) ∼ U
(
Fs(i)
2

)
, thus as

C(i)aux ∈ C
[
s(i), k

(i)
aux

]
we get that

P
(
e(i)aux + (hN R⊺)(i) ∈ C(i)aux

)
=

1

2s
(i)−k

(i)
aux

. (6.37)

Plugging these last equation into Eq. (6.36) yield that

E

(
1
hN ∈(CN )

⊥

b∏

i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)
=

1

2k−s

b∏

i=1

1

2s
(i)−k

(i)
aux

=
1

2k−kaux
(6.38)

where in the last equation we used the fact that by definition of the i’th part of a vector in
Eq. (6.3) we have that

b∑

i=1

s(i) = s,
b∑

i=1

k(i)aux = kaux.

Finally, plugging this last equality back into Eq. (6.35) gives that

E (F (ePG⊺
aux)) =

1

2k−kaux

∑

hN ∈Sn−s
w

∑

e
(1)
aux∈Ss(1)

t
(1)
aux

· · ·
∑

e
(b)
aux∈Ss(b)

t
(b)
aux

(−1)⟨eN ,hN ⟩
b∏

i=1

(−1)
〈
e
(i)
P ,e

(i)
aux

〉

=
1

2k−kaux
K(n−s)

w (|eN |)
b∏

i=1

K
(s(i))

t
(i)
aux

(∣∣∣e(i)P

∣∣∣
)

=
1

2k−kaux
K(n−s)

w (u)
b∏

i=1

K
(s(i))

t
(i)
aux

(
(t− u)(i)

)
(Eq. (6.33))

=

(
n−s
w

)∏b
i=1

(s(i)
t
(i)
aux

)

2k−kaux

K
(n−s)
w (u)

∏b
i=1K

(s(i))

t
(i)
aux

(
(t− u)(i)

)

(
n−s
w

)∏b
i=1

(s(i)
t
(i)
aux

)

= Nδ(n−s)
w (u)

b∏

i=1

δ
(s(i))

t
(i)
aux

(
v(i)
)

= Nδ

where in the last lines we used the definition of N and δ given in Proposition 53. This
concludes the computation of the expected value.

Let us now compute the variance of F (ePG⊺
aux). Starting again from Equation (6.34)

and denoting by A ∈ {−1, 1} the value:

A
(
hN , e(1)aux, . . . , e

(b)
aux

)
def
= (−1)⟨eN ,hN ⟩

[
b∏

i=1

(−1)
〈
e
(i)
P ,e

(i)
aux

〉]

we have that

F (ePG⊺
aux) =

∑

hN ∈Sn−s
w

∑
(
e
(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

A
(
hN , e(1)aux, . . . , e

(b)
aux

)
1
hN ∈(CN )

⊥

b∏

i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux
.
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Now we use the fact that we can upper bound the variance of
∑

iAiXi where Xi are some ran-
dom variables the Ai ∈ {−1, 1} are some fixed coefficient by upper bounding the covariances
as

Cov (Ai Xi, Aj Xj) = AiAjCov (Xi, Xj)

⩽ |Cov (Xi, Xj)| .

This observation allows us to write that

Var (F (ePG⊺
aux)) ⩽ V + C (6.39)

where

V
def
=

∑

hN ∈Sn−s
w

∑
(
e
(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

Var

(
1
hN ∈(CN )

⊥

b∏

i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)
(6.40)

and

C
def
=

∑

hN ∈Sn−s
w

∑

gN ∈Sn−s
w

∑
(
e
(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

∑
(
z
(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

1(hN , eaux) ̸=(gN , zaux) |C (hN , gN , eaux, zaux)| (6.41)

where

C (hN , gN , eaux, zaux)

def
= Cov

(
1
hN ∈(CN )

⊥

b∏

i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux
, 1

gN ∈(CN )
⊥

b∏

i=1

1
z
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)
.

(6.42)

Let us first compute the term V . As V is the variance of a Bernoulli distribution, we can
upper bound it by the expected value of this Bernouilli:

Var

(
1(hN R⊺,hN )∈W

b∏

i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)
⩽ E

(
1(hN R⊺,hN )∈W

b∏

i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux

)

=
1

2k−kaux
(Eq. (6.38))

And thus, plugging this last equation in Eq. (6.40) we get

V ⩽
∑

hN ∈Sn−s
w

∑
(
e
(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

1

2k−kaux

=

(
n−s
w

)∏b
i=1

(s(i)
t
(i)
aux

)

2k−kaux

= N.
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Let us now compute the covariance terms C by first rewriting C (hN , gN , eaux, zaux). We
have

C (hN , gN , eaux, zaux) = E

(
1
hN ∈(CN )

⊥

b∏

i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux
1
gN ∈(CN )

⊥

b∏

i=1

1
z
(i)
aux+(gN R⊺)(i)∈C(i)

aux

)

− E

(
1
hN ∈(CN )

⊥ ,

b∏

i=1

1
e
(i)
aux+(gN R⊺)(i)∈C(i)

aux

)
E

(
1
gN ∈(CN )

⊥ ,

b∏

i=1

1
z
(i)
aux+(gN R⊺)(i)∈C(i)

aux

)

Thus

C (hN , gN , eaux, zaux) =

= E

(
1
hN ∈(CN )

⊥1
gN ∈(CN )

⊥

b∏

i=1

1
e
(i)
aux+(hN R⊺)(i)∈C(i)

aux
1
z
(i)
aux+(gN R⊺)(i)∈C(i)

aux

)
−
(

1

2k−kaux

)2

= P
(
hN , gN ∈

(
CN
)⊥) b∏

i=1

P
(
e(i)aux + (hN R⊺)(i) ∈ C(i)aux, z

(i)
aux + (gN R⊺)(i) ∈ C(i)aux

)
−
(

1

2k−kaux

)2

(6.43)

where in the last line we used the independence of the variables.
1. Case hN ̸= gN . Suppose here that hN ̸= hN Let us first computeC (hN , gN , eaux, zaux).

First, as CN ∼ UG (n− s, k − s) we get from Proposition 5 that

P
(
hN , gN ∈

(
CN
)⊥)

=

(
1

2k−s

)2

Moreover, regardless of the values of e
(i)
aux and z

(i)
aux we have that e

(i)
aux+(gN R⊺)(i) and z

(i)
aux+

(gN R⊺)(i) are independent and uniformly distributed which yields that

if hN ̸= gN then P
(
e(i)aux + (hN R⊺)(i) ∈ C(i)aux, z

(i)
aux + (gN R⊺)(i) ∈ C(i)aux

)
=

(
1

2s
(i)−k

(i)
aux

)2

.

Plugging this last equality back into C gives that

If hN ̸= gN then C (hN , gN , eaux, zaux) = 0.

Using this fact in Eq. (6.41) gives that

C =
∑

hN ∈Sn−s
w

∑
(
e
(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

∑
(
z
(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

1eaux ̸=zaux |C (hN , hN , eaux, zaux)| (6.44)

2. Case hN = gN . Let us now compute |C (hN , hN , eaux, zaux)|. Recall that from
Eq. (6.43) we have that

C (hN , hN , eaux, zaux) =

= P
(
hN ∈

(
CN
)⊥) b∏

i=1

P
(
e(i)aux + (hN R⊺)(i) ∈ C(i)aux, z

(i)
aux + (gN R⊺)(i) ∈ C(i)aux

)
−
(

1

2k−kaux

)2

.
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But as we have that

P
(
hN ∈

(
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)⊥) b∏

i=1

P
(
e(i)aux + (hN R⊺)(i) ∈ C(i)aux, z
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⩽
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1
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)1
e
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This yield that

|C (hN , hN , eaux, zaux)| = O
(

1

2k−kaux

b∏

i=1

(
1

2s
(i)−t

(i)
aux

)1
e
(i)
aux ̸=z

(i)
aux

)
.

Finally

C = O




∑

hN ∈Sn−s
w

∑
(
e
(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

∑
(
z
(i)
aux∈Ss(i)

t
(i)
aux

)
i∈J1, bK

1eaux ̸=zaux

1

2k−kaux

b∏

i=1

(
1

2s
(i)−t

(i)
aux

)1
e
(i)
aux ̸=z

(i)
aux




= O



(
n−s
w

)∏b
i=1

(s(i)
t
(i)
aux

)

2k−kaux

∑

c∈{0,1}b : c ̸=0

b∏

i=1




(s(i)
t
(i)
aux

)

2s
(i)−t

(i)
aux




ci


= O


N

∑

c∈{0,1}b : c ̸=0

b∏

i=1




(s(i)
t
(i)
aux

)

2s
(i)−t

(i)
aux




ci
 .

Plugging this last upper bound for C along with the expression of V in Eq. (6.40) in Eq. (6.39)
allows writing

Var
(
FL (ePG⊺

aux)
)
⩽ N


1 +O


 ∑

c∈{0,1}b : c ̸=0

b∏

i=1




(s(i)
t
(i)
aux

)

2s
(i)−k

(i)
aux




ci




We can now prove our main lemma.

Proof of Lemma 31. The expected values are already given by Lemma 33, we only have to
show that

Var (F (ePG⊺
aux)) = O

(
N nb+1 max (1, Naux)

)
.

Recall that from Lemma 33, we have that

Var (F (ePG⊺
aux)) ⩽ N


1 +

∑

c∈{0,1}b : c ̸=0

b∏

i=1




(s(i)
t
(i)
aux

)

2s
(i)−t

(i)
aux




ci
 . (6.45)
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The result will come from the fact that, as for any i, j we have that

s(i) = s(j) ± 1,

k(i)aux = k(j)aux ± 1,

t(i)aux = t(i)aux ± 1,

we can write that

(s(i)
t
(i)
aux

)

2s
(i)−k

(i)
aux

= O


 s(i) + 1

t
(i)
aux + 1

(s(j)
t
(j)
aux

)

2s
(j)−k

(j)
aux


 (6.46)

= O(n)
(s(j)
t
(j)
aux

)

2s
(j)−k

(j)
aux

(6.47)

The previous equation yields that, regardless of c ∈ {0, 1}b in Eq. (6.45) we have that

b∏

i=1




(s(i)
t
(i)
aux

)

2s
(i)−t

(i)
aux




ci

= O


nb max


1,

∏b
i=1

(s(i)
t
(i)
aux

)

2s−kaux






= O
(
nb max (1, Naux)

)
.

Plugging this last equation in Eq. (6.45) we get:

Var (F (ePG⊺
aux)) ⩽ N


1 +

∑

c∈{0,1}b : c ̸=0

O
(
nb max (1, Naux)

)



⩽ N
[
1 + O

(
nb+1 max (1, Naux)

)]

= O
(
N nb+1 max (1, Naux)

)
.

Which is our desired result.

6.5.3.3 Proof of the bound on the number of candidates

Let us prove the proposition giving the number of candidates that we restate here Proposi-
tion 54.

Proposition 54. (Expected number of candidates when b = 1.) For any k, t, s, u, w, kaux, taux, b ∈
N implicit functions of n ∈ N such that

(
n−s
w

)(
s

taux

)

2k−kaux
∈ ω

(
n8
)

(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2 and

(
s

taux

)

2s−kaux
∈ O(1) and b = 1

we have, under Conjecture 3, that

E
(∣∣S ′

∣∣) = Õ(C)
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where

C
def
=

[
max

((
s

t−u

)

2kaux
, 1

)
+

(
s

t− u

)
max
(i,j)∈A

( (
n−s
i

)(
s
j

)

2n−k+kaux

)]
max

(
1,

2kaux(
s

t−u

)
)

and where C is distributed according to U (n, k) conditioned on the event that dim (CP) = s
and Caux ∼ U

(
Cjuxt [b, s, kaux]

)
where all the other quantities are defined in Notation 7 and

where we recall that

A def
= {(i, j) ∈ J0, n− sK× J0, sK : δ(n−s)

w (i) δ
(s)
taux (j) ⩾

δ
(n−s)
w (u) δ

(s)
taux (t− u)

n3.2
}.

Lemma 34. For any k, t, w, s, u, kaux, taux implicit functions of n ∈ N we have that

E
(∣∣S ′

∣∣) = O
(
E +

(
s

t−u

)

2kaux

)
max

(
1,

2kaux(
t−u
s

)
)

where we defined

E
def
=

(
s

t− u

)
P
(
FL (z) > T

)

and where z ∼ U
(
Fkaux
2 \ {ePG⊺

aux}
)

and where the other quantities and distributions are

defined in Proposition 54.

Remark 25. The previous expression for E (|S ′|) is somewhat slightly more messy and less
tight than what we could get optimally. However, in practice this is not a problem: basically
the only term of interest here is the main dominating term E. The term

(
s

t−u

)
/2kaux appears

because we upper bounded the probability that the secret ePG⊺
aux is in the set of candidates by 1,

it will be negligible compared to E. The multiplicative term max
(
1, 2kaux/

(
t−u
s

))
is a smooth-

ing term which is slightly artificial and comes because of our choice for the distribution of z:
it could be deleted by taking z distributed as some aG⊺

aux where a ∼ U
(
Sst−u \ {C⊥aux + eP}

)
.

But, we stick with our choice of for the distribution of z as it makes our discussion slightly eas-
ier and, in practice, all our optimal parameters are such that

(
s

t−u

)
/2kaux = 2Ω(n) consequently

having this term is really not a problem.

The proof of Lemma 34 is given in Section 6.5.3.3.2. This directly yields the following
corollary.

Corollary 12. For any k, t, w, s, u, kaux, taux, b implicit functions of n ∈ N such that
(
n−s
w

)(
s

taux

)

2k−kaux
∈ ω

(
n8
)

(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2 and

(
s

taux

)

2s−kaux
∈ O(1) and b = 1

then under Conjecture 3 we have that

E
(∣∣S ′

∣∣) = Õ
(
P
(
∃(i, j) ∈ A : N

(x)
i,j ̸= 0

))

where x ∼ U
(
Fs
2 \ {C⊥aux + eP }

)
and where we recall that

N
(x)
i,j

def
=
∣∣∣
{(

r, cN
)
∈ (x+ C⊥aux)× CN : |r| = j and

∣∣∣(r+ eP)R+ eN + cN
∣∣∣ = i

}∣∣∣

and R
def
= Lift

(
C⊥, N

)
and where the other distributions and quantities are defined in Propo-

sition 54.
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Proof. This is a direct application of Conjecture 3 as well as using the fact that Gaux is
of full rank kaux to argue that we can switch distribution from z in Proposition 54 to x in
Corollary 12.

Lemma 35. (Distribution of Ni,j) We have that

P
(
∃(i, j) ∈ A : N

(x)
i,j ̸= 0

)
= Õ

(
max
(i,j)∈A

(
n−s
i

)(
s
j

)

2n−k+kaux

)

and where all the other quantities and distributions are defined in Corollary 12.

The proof of this statement is made in Section 6.5.3.3.1.

Proof of Proposition 54. This is done by using Corollary 12 along with Lemma 35.

We only have left to prove the two previous lemmas, namely Lemma 34 and Lemma 35.
This is done in the two following sections.

6.5.3.3.1 Proof regarding the distribution of the weight enumerator This section
is dedicated to proving Lemma 35 that we recall here

Lemma 35. (Distribution of Ni,j) We have that

P
(
∃(i, j) ∈ A : N

(x)
i,j ̸= 0

)
= Õ

(
max
(i,j)∈A

(
n−s
i

)(
s
j

)

2n−k+kaux

)

and where all the other quantities and distributions are defined in Corollary 12.

Note that in a sense proposition is trivially true by supposing that the Poisson Model 5
holds. Hence, one does not necessarily have to read this section to be convinced of our results.
First, using the union bound and bounding the relevant probability by its expectation we get
that

Fact 27. We have that

P (∃(i, j) ∈ A : Ni,j ̸= 0) = O
(
n2 max

(i,j)∈A
E (Ni,j)

)

Lemma 36. We have that

EC,Caux,x (Ni,j) = N
(C⊥

aux)
j N

(CN )
i

where

N
(C⊥

aux)
j

def
= ECaux,x

(
Nj

(
C⊥aux + x

))
, N

(CN )
i

def
= EC

(
Ni

(
CN + v

))

and where v ∼ U
(
Fn−s
2

)
and where we recall that

Ni,j
def
=
∣∣∣
{(

r, cN
)
∈ (x+ C⊥aux)× CN : |r| = j and

∣∣∣(r+ eP)R+ eN + cN
∣∣∣ = i

}∣∣∣
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Proof. Rewritting

Ni,j =
∑

r∈C⊥
aux+x

⋂
Ss
j

Ni

(
(r+ eP)R+ eN + CN

)

we see that

Ni,j =
∑

z∈Ss
j

Ni

(
(z+ eP)R+ eN + CN

)
1“z∈C⊥

aux+x′′

=
∑

z∈Ss
j ,w∈Sn−s

i

1“w∈(z+eP)R+eN +CN ” 1“z∈C⊥
aux+x′′

We deduce that,

EC,Caux,x (Ni,j) =
∑

z∈Ss
j ,w∈Sn−s

i

P
(
w ∈ (z+ eP)R+ eN + CN , z ∈ C⊥aux + x

)

=
∑

z∈Ss
j ,w∈Sn−s

i

P
(
w ∈ (z+ eP)R+ eN + CN | z ∈ C⊥aux + x

)
P
(
z ∈ C⊥aux + x

)

Now, as x ∼ U
(
C⊥aux + eP

)
we necessarily have that if z ∈ C⊥aux + x then z ̸= eP and thus

z + eP ̸= 0. We can show in the same manner as in Lemma 32 (which is not directly

applicable as the distribution of C slightly differs) that we have that R ∼ U
(
Fs×(n−s)
2

)
and

thus (z+ eP)R + eN ∼ U
(
Fn−s
2

)
. Denoting, as in the lemma statement v ∼ U

(
Fn−s
2

)
we

get

EC,Caux,x (Ni,j) =
∑

z∈Ss
j ,w∈Sn−s

i

P
(
w ∈ CN + v

)
P
(
z ∈ C⊥aux + x

)

=


∑

z∈Ss
j

P
(
z ∈ C⊥aux + x

)



 ∑

w∈Sn−s
i

P
(
w ∈ CN + v

)



= N
(CN )
i N

(C⊥
aux)

j

Lemma 37. Using the same notations as Lemma 36 we have that

N
(CN )
i =

(
n−s
i

)

2n−k
(6.48)

N
(C⊥

aux)
j ⩽

(
s
j

)

2kaux

(
1 +O

(
2−kaux

))
(6.49)

Proof. The equality concerning N
(CN )
i is clear. Let us now show Equation (6.49). Recall that

N
(C⊥

aux)
j

def
= ECaux,x

(
Nj

(
C⊥aux + x

))
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where x is taken uniformly at random in Fs
2 \ {C⊥aux + eP}. Let z ∼ U (Fs

2). By the law of
total expectation we have that

E
(
Nj

(
C⊥aux + z

))
= E

(
Nj

(
C⊥aux + z

) ∣∣∣ z ∈ C⊥aux + eP

)
P
(
z ∈ C⊥aux + eP

)

+ E
(
Nj

(
C⊥aux + z

) ∣∣∣ z /∈ C⊥aux + eP

)
P
(
z /∈ C⊥aux + eP

)

⩾ E
(
Nj

(
C⊥aux + z

) ∣∣∣ z /∈ C⊥aux + eP

)
P
(
z /∈ C⊥aux + eP

)

= E
(
Nj

(
C⊥aux + x

))
P
(
z /∈ C⊥aux + eP

)

Using the fact that

P
(
z /∈ C⊥aux + eP

)
=

2s − 2s−kaux

2s

we can write that

E
(
Nj

(
C⊥aux + x

))
⩽

E
(
Nj

(
C⊥aux + z

))

P (z /∈ C⊥aux + eP)

=
E
(
Nj

(
C⊥aux + z

))

1− 2−kaux

= E
(
Nj

(
C⊥aux + z

))(
1 +O

(
2−kaux

))

=

(
s
j

)

2kaux

(
1 +O

(
2−kaux

))
.

This concludes the proof.

6.5.3.3.2 Expected number of false candidates Here we prove Lemma 34 which we
restate here.

Lemma 34. For any k, t, w, s, u, kaux, taux implicit functions of n ∈ N we have that

E
(∣∣S ′

∣∣) = O
(
E +

(
s

t−u

)

2kaux

)
max

(
1,

2kaux(
t−u
s

)
)

where we defined

E
def
=

(
s

t− u

)
P
(
FL (z) > T

)

and where z ∼ U
(
Fkaux
2 \ {ePG⊺

aux}
)

and where the other quantities and distributions are

defined in Proposition 54.

We make the proof with the two following lemmas.

Lemma 38. We have that

E
(∣∣S ′

∣∣) ⩽
(

s

t− u

)
P
(
FL (aG⊺

aux) > T
)

where a ∼ U
(
Sst−u

)
.
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Proof. Recall that

S ′ =
⋃

z∈S
Decjuxt

(
C⊥aux, z, t− u

)
.

By definition and because b = 1 we have that

Decjuxt
(
C⊥aux, z, t− u

)
= {x ∈ Sst−u : xG⊺

aux = z}.

As such

S ′ =
⋃

x∈Ss
t−u

1xG⊺
aux∈S

and thus

∣∣S ′
∣∣ =

∑

x∈Ss
t−u

1xG⊺
aux∈S .

By linearity of the expected value we have

E
(∣∣S ′

∣∣) =
∑

x∈Ss
t−u

P (xG⊺
aux ∈ S)

=
∑

x∈Ss
t−u

P (aG⊺
aux ∈ S | a = x)

=
∑

x∈Ss
t−u

P (aG⊺
aux ∈ S | a = x)

P (a = x)

P (a = x)

=

(
s

t− u

)
P
(
FL (aG⊺

aux) > T
)

where in the last line we used the law of total probability and the fact that P (a = x) =
1/
(

s
t−u

)
.

Let us now relate the probability P
(
FL (aG⊺

aux) > T
)
to our distribution of interest,

namely we get

Lemma 39. We have that

PC,Caux,a
(
FL (aG⊺

aux) > T
)
= O

(
PC,Caux,r

(
FL (r) > T

)
max

(
1,

2kaux(
t−u
s

)
))

where a ∼ U
(
Sst−u

)
and r ∼ U

(
Fkaux
2

)
.

Proof. Because Gaux is distributed uniformly at random among matrices of Fkaux×s
2 of rank

kaux we have that aG⊺
aux has the same distribution as r conditioned on the event that there

exists v ∈ Sst−u such that vG⊺
aux = r. Thus, by using Bayes’s theorem and bounding by the

relevant term we get

P
(
FL (aG⊺

aux) > T
)
⩽

P
(
FL (r) > T

)

P
(
∃v ∈ Sst−u : vG⊺

aux = r
) .
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Let us upper bound the denominator. If t− u = 0 we can conclude, else, let us suppose that
t− u ̸= 0. Let g,b ∈ Sst−u such that g ̸= b. From Proposition 5, and by denoting

p1
def
= P (bG⊺

aux = r) ,

p2
def
= P (bG⊺

aux = r, gG⊺
aux = r) ,

we have that

p1 = Θ

(
1

2kaux

)
,

p2 = Θ
(
p21
)
.

This allows us to use Bonferroni like inequalities to upper bound our probability. Namely,
from [dC97] we get that if Ax is a finite set of event indexed by x ∈ X we have that

P

( ⋃

x∈X
Ax

)
⩾
∑

x∈X

P (Ax)
2

∑
u∈X P (Ax ∩Au)

.

Applying it in our case directly yields that

P
(
∃v ∈ Sst−u : vG⊺

aux = r
)
⩾

(
t−u
s

)
p21

p1 +
(
t−u
s

)
p2

⩾
1

1

( s
t−u)p1

+ p2
p21

=
1

1

( s
t−u)p1

+Θ(1)

= Ω

(
min

((
s

t− u

)
p1, 1

))
.

Finally, this allows us to conclude that

1

P
(
∃v ∈ Sst−u : vG⊺

aux = r
) = O

(
max

(
2kaux(

s
t−u

) , 1
))

which concludes our proof.

We can now prove our proposition.

Proof of Lemma 34. Applying successively Lemma 38 and Lemma 39 and we get that

E
(∣∣S ′

∣∣) = O
((

s

t− u

)
P
(
FL (r) > T

)
max

(
1,

2kaux(
s

t−u

)
))

where we recall that r ∼ U
(
Fkaux
2

)
. By applying the law of total probabilities and bounding

the irrelevant terms by 1 we get

P
(
FL (r) > T

)
⩽ P

(
FL (r) > T

∣∣∣ r ∈ Fkaux
2 \ {ePG⊺

aux}
)
+ P (r = ePG⊺

aux)

= P
(
FL (z) > T

)
+

1

2kaux
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where in the last line we used the fact that z ∼ U
(
Fkaux
2 \ {ePG⊺

aux}
)
. This concludes the

proof.
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Chapter 7

Fully provable dual attacks

Summary

We devise a variant of double-RLPN (and RLPN) which has, up to polynomial factors, the same
performance as double-RLPN but which we can fully analyze without using any conjecture
whatsoever. The analysis of our variant only relies on the second-order concentration property
of the score function. Apart from simplifying the analysis it also simplifies the complexity
statement of double-RLPN: in the last chapter the statement had a parasitical term accounting
for the cost of checking the so called false candidates, here we do not have this. The cost
of our algorithm really is, up to polynomial factors, the cost of computing the N short dual
vectors and the cost of the FFT and it succeeded when N is of the order of 1/ε2 where ε is
the bias of the LPN samples. This chapter is not published yet.
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7.1. Introduction

7.1 Introduction

Recall that our analysis of RLPN and double-RLPN needed some conjecture about the expo-
nential tail bounds of some score function related to the LPN samples we compute. Our goal
here is to devise a slight variant of double-RLPN which achieves the same performances, up
to polynomials factor, as the original algorithm but can be fully proven without using any
conjecture. Let us forget about double-RLPN for now and talk only about RLPN, everything
we say can be adapted to the more complex setting of double-RLPN.

7.1.1 Technical difficulty in the analysis coming from RLPN

Recall that in RLPN we are given a noisy codeword y = c + e where c ∈ C and e ∈ Snt . We
choose two complementary subsets P and N of the support J1, nK and compute many dual
vectors h ∈ C⊥ which are of low Hamming weight on N , each yielding the following LPN
sample

⟨y,h⟩ = ⟨eP ,hP⟩+ ⟨eN ,hN ⟩ .
Finally, we compute a score function FL which gives us how likely a certain vector x is the
secret eP of the LPN samples by encoding how biased the quantity of interest ⟨y,h⟩−⟨x,hP⟩
is, namely (we have added explicitly the dependency in y)

FL
y (x) =

∑

h

(−1)⟨y,h⟩−⟨x,hP⟩.

Basically we are able to show, using second order concentration bounds on the score function,
i.e. bounds of the type

P
(∣∣FL

y (x)− E
(
FL
y (x)

)∣∣ ⩽ poly (n)
√
Var

(
FL
y (x)

))
⩾ 1− 1/ poly (n) , (7.1)

that we can distinguish a specific x ̸= eP from eP with probability 1 − 1/ poly (n) as long
as the number of dual vectors computed are of the order poly (n) /ε2 where ε is a bias of the
noise term ⟨eN ,hN ⟩. However, having in mind that we want to stay polynomially tight to
this condition, these bounds fall short to say anything about our ability to distinguish eP

from all of the x which are different from eP as this space is exponentially big (|P| is linear in
t), this is where we needed a conjecture about the exponential behavior of the score function.

7.1.2 The technique

We show here that we can find a workaround so that we only need our second order concen-
tration bound to analysis our new algorithm. From a high level point of view our algorithm

computes for each x ∈ F|P|
2 an associated guess for the value of eN and then tests this guess.

The crucial point being that regardless if x = eP or x ̸= eP we can then test a guess in
polynomial time simply by verifying that x concatenated with its associated guess for eN is
indeed the solution to our decoding problem by say verifying that it is of good weight t and
has the right syndrome. Our algorithm will be correct at the condition that when x = eP

the guess on eN is valid, and the other cases are consequently completely unimportant. Let

us explain how this guess is done. For x ∈ F|P|
2 we make the guess for eN one position at a

time as follows. The i’th position of eN , namely eNi
is guessed by constructing y(i) which
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is y but where we flipped yNi
, this has the effect of flipping eNi

. Now we for this specific x
make the guess eNi

= 1 if FL
y(i) (x) > FL

y (x) else we make the guess that eNi
= 0. Clearly

when x = eP then
FL
y(i) (eP) =

∑

h

(−1)⟨eN +δi,hN ⟩

which is expected to be bigger than FL
y (x) if we flipped an erroneous position as in that

case the weight of eN + δi is decreased compared to the weight of eN , hence our decision
rationale. Crucially when x = eP , our second order concentration bounds are sufficient here
as for each position i we compare only two distributions, the one related to eNi

being 0 and
the one for eNi

being 1. Of course, we must apply these bounds for each i ∈ J1, nK, but this
only incurs a polynomial loss compared to stronger bounds. We make no claim whatsoever
regarding the other cases corresponding to x ̸= eP as they will be naturally discarded by our
checking phase.

7.1.3 Why we have the same performance

While it is clear that second order concentration bounds are the only tool required to prove
the previously introduced algorithm, one could argue that we have somehow lost something
as the distribution we are trying to distinguish could be closer compared to the original
distribution we were trying to distinguish in RLPN. However, this is essentially not the case.
Recall that in RLPN wet bet that |eN | = u and make our analysis in the setting where all
dual vectors of weight w on N are computed. In this case the bias of the LPN samples in

RLPN is approximately δ
(n−s)
w (u) where |N | = n− s and the conclusion is that we needed

N =
poly (n)

(
δ
(n−s)
w (u)

)2

dual vectors for our algorithm to work as expected. The intuition boiled down to applying
Eq. (7.1) using the fact that our score function FL (x) had a variance of N and was expected

to be Nδ
(n−s)
w (u) when x = eP and 0 otherwise. Simplifying a bit, here in our case, the

distribution we are comparing are somewhat slightly closer as basically we are trying to

distinguish between two variables with expected value Nδ
(n−s)
w (u− 1) and Nδ

(n−s)
w (u+ 1),

but their distances are comparable as essentially in the non-oscillatory regime, δ
(n)
w (t+O(1))

is polynomially relatable to δ
(n)
w (t), namely

Lemma 40 (Difference of bias). Let n,w, t ∈ N, we have that

δ(n)w (t− 1)− δ(n)w (t) = 2
w

n
δ
(n−1)
w−1 (t− 1) .

As such clearly it is sufficient for our algorithm to compute, as before, poly (n) /
(
δ
(n−s)
w (u)

)2

dual vectors to be correct.

7.2 Fully provable double-RLPN

Let us now reuse the idea presented in the introduction but adapt it to double-RLPN. We
basically need 3 ingredients
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1. A procedure double-RLPN-ScoreFunction which given a vector y computes the
double-RLPN score function associated to the LPN problem generated by y (and some
given subpart P and N of the support).

2. A guessing procedure which will, for each vector in the secret space of the underlying
LPN problem make a guess for the value of eN by calling the previous procedure multiple
times.

3. A checking procedure which will check each guess for eN and will try to reconstruct
the whole error vector e. Importantly each guess is tested in polynomial time.

Our full algorithm is in fact basically choosing P and N and calling the guessing procedure
and then the checking procedure. As in, double-RLPN we will iterate it a certain number Niter

of times in order to make sure that there exists an iteration such that eN is of sufficiently
low weight. The whole algorithm is presented at the end of the section.

7.2.1 Computing the score function

Here basically we reuse the core part of the double-RLPN algorithm which serves to compute
the score function. We break it down into two procedures, one that computes the small
weight dual vectors and decode them into an auxiliary code, and one that from this set of
decoded dual vectors and a given vector y computes the associated score function. The first
one Decoded-dual-vector-double-RLPN(C,P,N , Caux) takes as input a linear code C
of length n, P and N two complementary subparts of J1, nK and Caux an [s, kaux] linear code
of generator matrix Gaux. It outputs a set

H ⊂ {(h,maux) C⊥ × Fkaux
2 : |hN | = w and mauxGaux + hP ∈ Sstaux}

of decoded dual vectors as in RLPN. It is given in Algorithm 25.

Algorithm 25

Name: Decoded-dual-vector-double-RLPN(C,P,N , Caux)
Input: C, P, N , Caux
Parameter: w, s, kaux, taux
1: WN ← Compute-Dual-Vectors(CN ; w) ▷ Returns a subset of dual vectors of CN

which are of weight w
2: W ← {Lift(C⊥,N , hN ) for hN ∈ WN } ▷ Lift those dual vectors hN ∈

(
CN
)⊥

to make
them dual vectors h of C of low weight w on N

3: Caux ← Sample-Auxilary-Code(F)
4: Gaux ← G (Caux)
5: H ← ∅
6: for h ∈ W do
7: E ← Decode-Auxilary(Caux,hP)▷ Returns a set of error of small weight eaux ∈

Sstaux s.t hP − eaux ∈ Caux
8: for eaux ∈ E do
9: maux is the unique vector such that mauxGaux = hP − eaux

10: H .append((h, maux)) ▷ The set of decoded dual vectors
11: return H
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From the set H of decoded dual vectors and a vector y ∈ Fn
2 the procedure Score-

function(y, H ) computes its associated score function.

Definition 44. For all z ∈ Fkaux
2 we define

FL
y (z)

def
=

∑

(h,maux)∈H

(−1)⟨y,h⟩−⟨maux,z⟩.

The procedure to compute this score is recalled in Algorithm 26.

Algorithm 26

Name: Score-function(y, H )
Input: y, H
1: L ← the list of samples (maux, ⟨y,h⟩) for (h,maux) ∈H
2: FL

y ← FFT-LPN-Solver(L) ▷ The procedure is defined in Algorithm 10

3: return FL
y

7.2.2 Guessing phase

Recalling that Fkaux
2 the space in which lives the secret of the underlying LPN problem ePGaux,

our goal here is for each z ∈ Fkaux
2 , to make a guess on the value of eN , we make this guess

bit by bit. We will exploit the fact that when z is secret of our LPN samples, namely ePG⊺
aux

we have that

Fact 28.
FL
y (ePG⊺

aux) =
∑

(h, eaux)∈H

(−1)⟨eN ,hN ⟩+⟨eP ,eaux⟩.

Observe that flipping the positions of the received word y is exactly flipping the positions
of the error vector e. Thus, we have an impact on the score function by flipping the i’th bit
of y in N .

Definition 45. For any i ∈ J1, nK we denote by y(i) ∈ Fn
2 the vector defined as

(
y(i)
)
P

def
= yP

and
(
y(i)
)
N

def
= yN + δi where δi ∈ Fn−s

2 is the vector which is zero everywhere except on its
i’th coordinate.

Fact 29.
FL
y(i) (ePG⊺

aux) =
∑

(h, eaux)∈H

(−1)⟨eN +δi,hN ⟩+⟨eP ,eaux⟩.

It is readily seen that this last quantity is expected to be bigger than original FL
y (ePG⊺

aux)
if we flipped an erroneous position, namely if (eN )i = 1. This is our decision rationale for
our guess on eN .

7.2.2.1 Algorithm

We compute for each z ∈ Fkaux
2 and associated guess for eN , call itG (z) ∈ Fn−s

2 by successively
flipping the bits of y as described above. More precisely the i’th bit of G (z) is determined
by computing a reference score function FL

y and computing the flipped score function FL
y(i)

and comparing them.
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Definition 46. For each x ∈ Fkaux
2 we denote by G (z) the vector of Fn−s

2 whose i’th coordinate
is equal to

G (z)i
def
=

{
1 if FL

y(i) (z) > FL
y (z)

0 else.
.

We call G (z) the guess for eN related to z.

We then store these guesses in a set G = {(z, G (z)) : z ∈ Fkaux
2 } and outputs it.

Algorithm 27

Name: Guessing-eN (C,y,P,N )
Input: C,y,P,N
1: H ← Decoded-dual-vector-double-RLPN(C,P,N )
2: FL

y ← Score-Function(y,H ) ▷ Reference value of the score function
3: while i = 1 . . . n− s do
4: y(i) ← y + δNi

▷ This flips the i’th bit of eN

5: FL
y(i) ← Score-Function(y(i),H ) ▷ Comparative score function

6: Compute G (z) (Definition 46) for all z ∈ Fkaux
2

7: return {(z, G (z)) : z ∈ Fkaux
2 }

7.2.3 Checking phase

Here we want to check each guess for eN . It is important that each guess is checked in
polynomial time as we range over the whole secret space Fkaux

2 , and we want this step to no
dominate in front of the FFT say. Note that in the case of double-RLPN the secret of the
LPN samples is not eP but rather some linear combination of eP , say ePG⊺

aux where Gaux

is the generator matrix of the code used in the reduction from sparse− LPN to plain− LPN.
Consequently, given z a candidate for ePG⊺

aux and an associated guess for eN we cannot easily
verify if this couple is indeed the solution to our decoding problem as we could have done if
we had access to eP . Notably, trying to recover eP from ePG⊺

aux would be exponentially
harmful in here as we observe that in practice our double-RLPN optimal parameters are such
that this compression of eP is extremely lossy, namely the Hamming sphere in which eP lives
is exponentially larger than this arrival space. We believe there are workarounds for this issue
but to keep our new algorithm the most simple possible we restrict ourselves to the setting
where the position given by N are an information set of the code C with good probability.
In this case everything is simple as a guess z for eN can be verified in polynomial time by
simply computing the unique codeword c of C which is equal to yN − z on the part N and
then check that y − c is of good Hamming weight t (the weight of the error). Importantly,

denoting by s
def
= |P|, the setting where N is an information set with good probability, is

when

n− s ⩾ k

which are trivially verified by all our parameters when the rate R of the code C is smaller
than 0.5 as s ⩽ k. This is more than enough to account for the interesting parameters for
which we beat the ISD’s. The checking algorithm is described in Algorithm 28.
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Algorithm 28

Name: Checking-eN (G, C,y,P,N )
Input: G, C,y,P,N
Parameter: t
1: while e

(z)
N ∈ G do

2: cN ← yN − e
(z)
N

3: c← Lift (C, N , cN )
4: if |y − c| = t then
5: e← y − c
6: return e

It is readily seen that we have that

Fact 30. If the guess for eN related to the secret ePG⊺
aux is good, namely if G (ePG⊺

aux) =
eN and if N contains an information set of C then Checking-eN outputs e.

7.2.4 Whole algorithm

Finally, our whole algorithm retakes the main loop of double-RLPN by choosing at random
two complementary subsets P and N of J1, nK and an auxiliary code Caux at random among
a family F and running the checking and guessing procedure. We loop Niter in order to
ensure that there exists at least one iteration such that the weight distribution of the error e
on its subpart verifies some bet.

Algorithm 29 double-RLPN algorithm

Name: double-RLPN
Input: C ∈ C [n, k] , y ∈ Fn

2 , t
Parameter: s, w, u and Niter

1: while i = 1 . . . Niter do

2: P
$←{P ⊂ J1, nK : |P| = s} ▷ Hope that eN = u

3: N ← J1, nK \P
4: G ←Guessing-eN (C,y,P,N )
5: e← Checking-eN (G, C,y,P,N , t)
6: if e ̸= ⊥ then
7: return e

7.3 Instantiation with a juxtaposition codes

As done in the chapter presenting double-RLPN we instantiate it using juxtaposition codes
and their decoder.

Algorithm 4. We define an instantiation of Algorithm 29 taking b as an additionnal param-
eter where

• The family F ⊂ C [s, kaux] of auxiliary codes is defined as

F = Cjuxt [b, s, kaux]

197



7.4. Performance of the algorithm, main theorem

• The procedure Sample-Auxilary-Code(F) which returns a code Caux which was cho-
sen uniformly at random in Cjuxt [b, s, kaux] by choosing each of its constituent codes

C(i)aux ∼ U
(
s(i), k(i)

)
.

• After having chosen the code Caux we precompute the table of syndromes with a call to
SyndromeTable← Juxt-PrecomputeSyndrome(Caux; taux). Each call to
Auxilary-Decode(Caux, a; taux) is then replaced with one call to
Juxt-Decode(∗SyndromeTable, a).

It is readily seen, that this instantiation has the following complexity.

Proposition 55 (Complexity of fully provable double-RLPN with juxtaposition codes). Let
n and let k, t, s, kaux, taux, Niter, b be the parameters of Algorithm 4, all implicit functions of
n. Suppose that b ⩾ ⌈s/kaux⌉ and that

(
s

taux

)
/2s−kaux = poly (n). Then, given an instance of

DPG (n, k, t), the expected time and memory complexity of Algorithm 4 is given by

Time = Õ
(
Niter

(
Teq + 2kaux

))
, Memory = Õ

((
Meq + 2kaux

))

where Teq and Meq are respectively the expected time and memory complexity of one call to
Compute-Dual-Vector(C) given C ∼ UG (n− s, k − s).

7.4 Performance of the algorithm, main theorem

We give here the main theorem giving the complexity and correctness of the algorithm,
we prove it in the next Section 7.5. Our theorem is stated when the number of blocks in
the juxtaposition code is constant. Furthermore, we make our statement in the case where
essentially all the dual vectors are computed and the number of blocks in the juxtaposition
code is constant.

Theorem 9. There exists a positive poly-bounded function f such that for any k, t, s, b, kaux, taux, w, u ∈
N implicit functions of a parameter n ∈ N (n is growing to infinity) and any procedure
Compute-Dual-Vectors that are such that

1. (Computing all the dual vectors)

PD∼UG(n−s, k−s)

(
Compute-Dual-Vectors(D) = D⊥

⋂
Sn−s
w

)
∈ 1− o(1) ,

2. (Linear scaling and constant number of blocks) b =
⌈

s
kaux

⌉
and b ∈ O(1),

3. (Main constraint that we have enough dual vectors)

(
n−s
w

)(
s

taux

)

2k−kaux
∈ Ω


 f(nb)
(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2


 ,

4. (Decoding the auxiliary code below Gilbert-Varshamov)
(

s
taux

)
/2s−kaux ∈ O(1) ,

5. (N is an information set of the code C) n− s− k ∈ ω (1),
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6. (Small technical constraints) u < Root
(
K

(n−s)
w

)
and (t− u)(i) < Root

(
K

(s(i))

t
(i)
aux

)
for

i ∈ J1, bK and k − s ∈ ω(1)

then there exists Niter an implicit function of n such that Algorithm 4 solve DPG (n, k, t) with
probability 1− o(1) in time and memory

Time = Õ
( (

n
t

)
(

s
t−u

)(
n−s
u

)
(
2kaux + Teq

))
, Memory = Õ

((
2kaux +Meq

))

where Teq and Meq are respectively the expected time and memory complexity of one call
to the procedure Compute-Dual-Vectors(D) when D ∼ UG (n− s, k − s) and where we

recall that δ
(n)
w (t) is defined in Definition 25 and Root

(
K

(n)
w

)
is defined in Definition 26.

In particular, this gives the following corollary.

Corollary 13. Any complexity claim made under Conjecture 3 concerning Algorithm 3 with
parameters verifying the constraints and choices of Theorem 8 are provably achieved, up to
polynomial factors, by Algorithm 4 when the rate of the code R is smaller than 0.5.

While we believe it is true, we refrain to say that in general, the performance of this
new algorithm is equivalent, up to polynomial factors to the performance of double-RLPN
algorithm, this is the reason why restricted the previous corollary to parameters verifying
constraints given by Theorem 8. Indeed, in double-RLPN because we allowed some false
candidates we have more margin on the choice of the parameters. However we think that this
margin is of a polynomial nature. In contrary, while we believe that false candidates are never
an issue in double-RLPN, we do not know in general if there are some pathological optimal
parameters which would be such that the cost of checking false candidates dominate, even if
we conjecture that it is never the case.

7.5 Analysis, proof of the main theorem

Here our goal is to prove Theorem 9. Again, to simplify further statements we use the
following notation which corresponds to the quantities handled by our algorithm when we are
in a good iteration. More precisely we suppose dim (CP) = s (this happens with probability
1−o(1) as n−s−k = Ω(log2 k)) and that all the dual vectors of weight w on N are computed
(this also happens with probability 1−o(1)). Last in fact in the proof of Theorem 9 we choose

Niter as some well-chosen Õ
(

(nt)
( s
t−u)(

n−s
u )

)
so that we are guaranteed with probability 1− o(1)

that there exists some iteration which is such that the bet on the error is valid (as well as the
finer bet due to the use of juxtaposition codes):

|eN | = u

b∧

i=1

∣∣∣e(i)P

∣∣∣ = (t− u)(i) .

This is true because b = O(1). Our main proposition will be that, the guess on eN related to
the secret of the LPN problem ePG⊺

aux is valid with good probability, namely that we have
that G (ePG⊺

aux) = eN with probability 1− o(1).
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Proposition 56. There exists a positive poly-bounded function f such that for any t, k, s, kaux, taux, w, u, b ∈
N implicit functions of n such that u < Root

(
K

(n−s)
w

)
and (t− u)(i) < Root

(
K

(s(i))

t
(i)
aux

)
for all

i ∈ J1, bK and

(
n−s
w

)(
s

taux

)

2k−kaux
⩾

f
(
nb
)

(
δ
(n−s)
w (u) δ

(s)
taux (t− u)

)2 and

(
s

taux

)

2s−kaux
∈ O(1) and b ∈ O(1)

then we have that

P (G (ePG⊺
aux) = eN ) = 1− o(1) .

where

• N and P are two fixed complementary subsets of J1, nK.

• C is distributed according to the distribution UG (n, k) conditioned on the event that
dim (CP) = s and Caux ∼ U

(
Cjuxt [b, s, kaux]

)
and Gaux ∈ Fkaux×s

2 is any generator
matrix of Caux.

• y = c+e where c ∼ U (C) and e ∈ Snt is a fixed vector such that the bet is valid, namely

|eN | = u

b∧

i=1

∣∣∣e(i)P

∣∣∣ = (t− u)(i) .

• The set H is

H
def
= {(h,maux) ∈ C⊥ × Fkaux

2 : |hN | = w, ∀i ∈ J1, bK, (mauxGaux + hP)(i) ∈ Ss(i)
t
(i)
aux
}.

• The other quantities appearing y(i), FL
y (z) and G (z) are the one as defined in Sec-

tion 7.2.

One can convince himself that this last proposition imply the main Theorem 9. The goal
of this section is to prove this proposition. Let us recall the quantities quickly. By definition
G (z) is a vector of Fn−s

2 defined coordinate by coordinate as

G (z)i
def
=

{
1 if FL

y(i) (z) > FL
y (z)

0 else.

where we recall that y(i) is y where we flipped the i’th bit of yN . Now to prove that the guess
is good with probability 1 − o(1) we in fact prove that the guess on each coordinate is valid
with probability 1−o(1/n), namely that we have that G (ePG⊺

aux)i = (eN )i with probability
1− o(1/n) and conclude with a union bound argument. The main tool we use are the second
order concentration bounds on the score function devised in the previous chapter: applying
Byenemé-Chebyshev inequality on the moment of the score function given by Lemma 31 we
have the following.
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Lemma 41 (Corollary of Lemma 31). There exists a positive poly-bounded function f such
that for any t, k, s, kaux, taux, w, u, b ∈ N implicit functions of n such that

(
s

taux

)
/2s−kaux ∈ O(1)

then for any i ∈ J1, n− sK we have that

P
(∣∣FL

y (ePG⊺
aux)− E (0)

∣∣ ⩾ f1(n
b)
√
N
)
= O

(
1

n2

)
,

P
(∣∣∣FL

y(i) (ePG⊺
aux)− E

(
(−1)(eN )i

)∣∣∣ ⩾ f1(n
b)
√
N
)
= O

(
1

n2

)

where

E (x)
def
= Nδ(n−s)

w (u+ x)

b∏

j=1

δ
(s(j))

t
(j)
aux

(
(t− u)(j)

)
, N

def
=

(
n−s
w

)∏b
j=1

(s(j)
t
(j)
aux

)

2k−kaux
.

Thus, using the notations and quantities of the previous propositions, we make the good
guess for each coordinate with probability 1− o

(
1/n2

)
as long as

{
E (−1)− E (0) > f1(n

b)
√
N if (eN )i = 1

E (0)− E (1) > f1(n
b)
√
N if (eN )i = 0.

Let us upper bound the minimum value of these differences. We have that

Lemma 42. There exists a positive poly-bounded function f2 such that for any t, k, s, kaux, taux, w, u, b ∈
N implicit functions of n such that u < Root

(
K

(n−s)
w

)
and (t− u)(i) < Root

(
K

(s(i))

t
(i)
aux

)
for all

i ∈ J1, bK then

min (E (−1)− E (0) , E (0)− E (1)) ⩾
1

f2(n)
Nδ(n−s)

w (u)

b∏

j=1

δ
(s(j))

t
(j)
aux

(
(t− u)(j)

)

We prove this lemma in Section 7.5.1. Using the two previous lemmas we get the following
proposition.

Proposition 57. There exists a positive poly-bounded function f3 such that for any t, k, s, kaux, taux, w, u, b ∈
N implicit functions of n such that u < Root

(
K

(n−s)
w

)
and (t− u)(i) < Root

(
K

(s(i))

t
(i)
aux

)
for all

i ∈ J1, bK and

N ⩾
f3
(
nb
)

(
δ
(n−s)
w (u)

∏b
j=1 δ

(s(j))

t
(j)
aux

(
(t− u)(j)

))2

then we have that

P (G (ePG⊺
aux) = eN ) = 1− o(1) .

Finally, using the Lemma 30 about the fact that all these quantities relate polynomially
to the case b = 1 as long as b = O(1), we finally get the main Proposition 56 we wanted to
prove.believe
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7.5.1 Proof of the intermediate lemmas

Here we prove Lemma 42. Recall that by definition in Lemma 41 we have that

E (−1)− E (0) = N
(
δ(n−s)
w (u− 1)− δ(n−s)

w (u)
) b∏

j=1

δ
(s(j))

t
(j)
aux

(
(t− u)(j)

)
(7.2)

E (0)− E (1) = N
(
δ(n−s)
w (u)− δ(n−s)

w (u+ 1)
) b∏

j=1

δ
(s(j))

t
(j)
aux

(
(t− u)(j)

)
. (7.3)

We use the following lemma for the proof

Lemma 43 (Difference of bias). Let n,w, t ∈ N, we have that

δ(n)w (t− 1)− δ(n)w (t) = 2
w

n
δ
(n−1)
w−1 (t− 1) .

Proof. Recall that

δ(n)w (t) =
K

(n)
w (t)(
n
w

) .

From the recurrence relations of Proposition 20 we have that

K(n)
w (t− 1) = K(n−1)

w (t− 1) +K
(n−1)
w−1 (t− 1) ,

K(n)
w (t) = K(n−1)

w (t− 1)−K(n−1)
w−1 (t− 1) .

Now, using the fact that (
n

w

)
=
n

w

(
n− 1

w − 1

)

we get

δ(n)w (t− 1)− δ(n)w (t− 1) =
2K

(n−1)
w−1 (t− 1)(

n
w

)

= 2
w

n

K
(n−1)
w−1 (t− 1)(

n−1
w−1

) .

Using this lemma inside Eq. (7.2) yield that

E (−1)− E (0) = N2
w

n
δ
(n−s−1)
w−1 (u− 1)

b∏

j=1

δ
(s(j))

t
(j)
aux

(
(t− u)(j)

)
(7.4)

E (0)− E (1) = N2
w

n
δ
(n−s−1)
w−1 (u)

b∏

j=1

δ
(s(j))

t
(j)
aux

(
(t− u)(j)

)
. (7.5)
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Now from the fact that we supposed in the proposition that we are ultimately outside the
root region of Krawtchouk polynomials we have that the bias is decreasing in this region so
we can write that ultimately, for n big enough,

min (E (−1)− E (0) , E (0)− E (1)) = E (0)− E (1)

= N2
w

n
δ
(n−s−1)
w−1 (u)

b∏

j=1

δ
(s(j))

t
(j)
aux

(
(t− u)(j)

)
.

Using once again the fact that we are outside the root region of Krawtchouk polynomials and
Corollary 5 (along the fact that κ is derivable) we get that

δ
(n−s−1)
w−1 (u) = Ω̃

(
δ(n−s)
w (u)

)

where the Ω̃ () term does not depend on the functions w, u, s. This concludes the proof.
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Chapter 8

Dual attacks in lattice-based
cryptography and their analysis

Summary

In this section we give a very brief introduction to the LWE problem and lattice-based
cryptography. We draw a quick comparison between the recent lattice-based dual attacks
and the code-based dual attacks we devised in this thesis. Some of the most recent attacks
[GJ21, MAT22] claim to diminish the security of Kyber but their analysis relies on
independence assumptions that were recently shown to be false in [DP23b]. This leaves
open the question of whether these attacks work as expected and how to actually analyze
them. As a contribution in this chapter we provide tools for this analysis. These results
were published, in a slightly different form in [CDMT24, Section 8].
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8. Dual attacks in lattice-based cryptography and their analysis

8.1 The LWE problem and lattice-based cryptography

In his seminal work, [Reg05] built an encryption scheme whose security relied on the hard-
ness of the so-called Learning With Errors (LWE) problem. This problem is conjectured to
be quantumly hard to solve and its hardness is now at the heart of the security of many
schemes, such as the NIST standards Kyber and Dilithium. As such, the complexity of the
best algorithms for solving it allows to correctly choose the parameters of those schemes.

8.1.1 The LWE problem

The LWE problem is essentially a generalization of the decoding problem presented before,
the difference being that the considered linear system lies in a much larger ring Zq with say
q > 2 instead of the binary field F2 and the metric changes from the Hamming weight to
a much finer one: the coordinates of the error e ∈ Zn

q are chosen to be small compared
to q. Here we qualify ”small” by identifying Zq with the set of integers (say q is odd)
{ −(q − 1)/2, · · · 0, · · · , (q − 1)/2}.
Definition 47 (LWE problem, generator matrix). Let n, k, q ∈ N with k ⩽ n and let χ be a
distribution with support in Zq. Given n, k, q, χ and (G, y) where

• G is taken uniformly at random in (Zq)
k×n,

• y = sG+ e where e ∼ χn and s ∼ U
(
Zk
q

)
,

the goal is to find the vector e. We sometime additionally refer to k as the dimension of the
problem and n as the length or number of samples.

Remark 26. To fix the intuition about the hardness of this problem, one can think of Kyber’s
hardest mode whose security essentially relies on solving this LWE problem with parameters
q = 3329, n = 2048, k = 1024 and χ is a centered binomial distribution with support J−2, 2K.
This represents a regime which is deeply in the injective regime, where we do not expect any
other non-planted solution. The current estimations (i.e. the complexity of the best attack)
predict that solving this problem is as hard as breaking AES-256.

In practice χ is often symmetric and concentrated around 0, and is a discrete Gaussian
distribution in Regev’s original work. This naturally involves the Euclidean metric as in that
case one can argue that the error e is roughly uniformly distributed in some Euclidean ball
of small known radius and the problem really becomes to find the e of small Euclidean norm
||e|| such that b− e is a codeword of the code generated by G. Here we embedded Zn

q with
the standard Euclidean norm ||x|| = ∑n

i=0 x
2
i where x ∈ Zn

q is seen, we recall, as an integer
vector with entries smaller or equal than (q − 1)/2.

Now, note that Regev’s scheme can be viewed as the lattice counterpart of the code-
based Alekhnovich scheme. With various improvements it eventually yielded Kyber. One
of which came from the introduction, for efficiency purposes, of an underlying polynomial
ring structure, but it is not believed to degrade the hardness of the problem by more than
polynomial factors in practice. This will be the reason why we stick, as it is traditionally
done for generic attacks, to the study of the hardness of the problem defined over Zq.

Contrary to the standard decoding problem we presented earlier, taking a higher modulus
and using a finer norm at the same time somewhat changes the source of hardness of this
problem in terms of both the underlying security reduction and the techniques used to solve
it. Let us explain both of these points, each in the two following subsections.
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8.1. The LWE problem and lattice-based cryptography

8.1.2 Lattices

Regev [Reg05] also gave arguments for the security of his scheme by showing that the average
LWE problem was quantumly harder than some worst-case lattice problems that were difficult
in practice.

Definition 48 (Lattice). A lattice Λ is a discrete subgroup of Rn.

Fact 31. If Λ is a lattice of Rn there exists a rank d ⩽ n and basis B ∈ Rd×n of rank d such
that Λ = ZdB. We denote by

Λ (B)
def
= { xB : x ∈ Zn}

the lattice generated by the basis B.

More precisely, Regev showed that there was a polynomial quantum reduction from the
problem of approximating (up to a polynomial factor

√
n) the length of the shortest non-zero

vector in any given lattice to the LWE problem. And, while [AR05] showed that this last
approximation problem was in NP ∩ CoNP, it is still believed to be hard in practice, as the
best-known algorithms solving this problem are sieving algorithms, starting with [AKS01],
that run in time 2O(n). Roughly speaking, his reduction works when the modulus and the
error distribution are sufficiently large and wide respectively (compared to n). It was left as
an open question whether or not such a reduction could exist in the binary case.

8.1.3 Primal attacks for solving LWE

First, recall that LWE is really a code problem. Say q is prime, then G ∈ Fk×n
q can be

seen as the generator matrix of a q-ary code C, and y = sG+ e as some noisy codeword we
want to decode. However, it is readily seen that the techniques used to solve the standard
binary decoding problem and the LWE problem are somewhat different. For example, one
can convince oneself that the Prange bet that k positions of the error are all 0 becomes less
and less interesting as the metric gets finer (whereas it’s a very good bet in Zq with the
Hamming metric). Solving LWE is rather often done by reducing it to a lattice problem.
Namely, one can embed C onto a lattice with Construction A, defined as follows.

Definition 49 (Construction A). Let C be a q-ary linear code of length n. The lattice obtained
by Construction A applied to C is given by

Λq(C) def
= Λ = C + qZn (8.1)

= {x ∈ Zn : (x mod q) ∈ C} . (8.2)

We say furthermore that Λq (C) is a q-ary lattice.

In that case, recovering the error e from y = c+e is really finding the point of the lattice
Λ which is the closest to y, seen as a vector in Rn. One can easily turn this problem into
the problem of finding the shortest vector in a closely related lattice. This can be solved by
enumeration techniques in superpolynomial time [SE94, Kan83], but more recent sieving-style
algorithms [AKS01, NV08, MV] allow solving the problem in time 2O(n). These are called
primal attacks because they manipulate primal vectors, i.e. vectors in Λ. These sievers can
be sped up by using some near-neighbor subroutine [BGJ15, Laa15, BDGL16]. The best in
terms of asymptotic time complexity is given by [BDGL16], whose technique allows one to
heuristically find the shortest vector in time 20.292n(1+o(1)).
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8. Dual attacks in lattice-based cryptography and their analysis

8.1.4 Length of the shortest vector

One natural question when studying this shortest vector problem is to actually estimate the
length of the shortest vector in a random lattice. The fundamental quantity underlying this
question is its volume.

Definition 50 (volume). The volume V (Λ) of a lattice Λ is the Euclidean volume of its
fundamental domain

V (Λ) def
= V (span (Λ) /Λ) =

√
det (B⊺B)

where B is any basis of Λ and where V () on the right side of the equality is the Euclidean
volume.

It is easy to compute the expected number of lattice points in a ball from a random coset
of a fixed lattice.

Fact 32. Let Λ be a full rank lattice in Rn. Let y ∼ U (Rn/Λ). We have for any r > 0 that

E
(
(Λ + y)

⋂
Ballnr

)
=
V (Ballnr )
V (Λ)

where we recall that V (Ballnr ) = πn/2

Γ(n
2
+1)

rn.

The situation is slightly more tricky when we want to compute the expected number of
lattice points in a ball for a random lattice (without taking a random coset). A classical result
of [Rog56] yields that for lattices taken at random according to Siegel’s measure [Sie45], we
really have that

E
(
(Λ \ {0 })

⋂
Ballnw

)
=
V (Ballnr )
V (Λ) .

The same result is slightly less simple for random q-ary lattices as computing the expected
number of codewords of C within a Euclidean ball of a certain radius is easy but involves
the number of points of Zn

q inside a certain Euclidean ball whose exact formula is rather
complicated. However, as q grows one can reasonably approximate this quantity by the
volume of the Euclidean ball, see [Zam14, Lemma 7.9.2] for a more precise statement. To
simplify the expressions, from Stirling’s formula we have the classical asymptotic equivalent

Γ
(
n
2 + 1

)
∼ √πn

(
n
2e

)n/2
, that leads to the following heuristic.

Heuristic 1 (Gaussian Heuristic). When Λ is a (random) full-rank lattice in Rn we say that
we use the Gaussian heuristic when we approximate |(Λ \ {0})⋂Ballnr | by

rn

V (Λ)
(2πe)n/2√
nπnn/2

.

Note that for q-ary lattices the volume is easily computable.

Fact 33. If q is prime and C is a q-ary linear code of length n and dimension k then the
volume of the q-ary lattice given by C is V (Λq (C)) = qn−k.

Combining the Gaussian heuristic with the previous fact we can estimate that the expected

length of the smallest non-zero vector in C or equivalently Λq (C) is around (neglecting
√
nπ

1/n
)

q(n−k)/n

√
n

2πe

and this estimation gets better as q increases.
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8.2. Dual attacks

8.2 Dual attacks

Similar to coding theory, dual attacks against LWE were first uncompetitive compared to
primal attacks, but were successively improved [ADPS16b, Alb17, EJK20], up until [GJ21,
MAT22], which eventually claimed to weaken the security of Kyber and Dilithium. These latter
claims were seriously questioned recently in [DP23b], that invalidated some key independence
heuristics used in the analysis of these attacks. We return to the LWE problem later and
focus for now just to give a brief history on the origins of dual attacks [AR04].

8.2.1 A bit of history

Basically, a tool was devised there to prove that the approximate closest vector problem was
in NP ∩ CoNP. In this problem, given a lattice Λ and some point y ∈ Rn, the goal is to
decide whether y is closer or further than some thresholds. The tools developed there led to
a procedure to actually solve the problem efficiently for any y ∈ Rn, provided that we make
a preprocessing step on Λ. Of course, the whole point here was to target a regime where the
problem was believed to be hard without this preprocessing step (or the so-called succinct
witness). This succinct approximation is based on a key duality using the Poisson summation
formula to express distance to the primal lattice in terms of a sum of vectors over the dual
lattice.

Definition 51 (Dual lattice). The dual of a lattice Λ ⊂ Rn is the lattice of Rn defined as

Λ∨ def
= { x ∈ span (Λ) : ⟨x, c⟩ ∈ Z ∀c ∈ Λ}.

Without going into the details, this was possible by relaxing the distance function into
some closely related approximate form.

Proposition 58 (Page 10 [AR04]). Let Λ be a lattice of Rn and y ∈ Rn. We have that

1

α

∑

x∈Λ
e−π||x−y||2 = Eh (cos (2π ⟨y,h⟩))

where h is taken at random in the dual lattice Λ∨ with probability e−π||h||2/β where β =
∑

h∈Λ∨ e−π||h||2 is a normalization constant and where α
def
=
∑

x∈Λ e
−π||x||2.

Basically, one can note that the left-hand side of the equality approximates the distance of
y to the lattice Λ due to the exponentially decaying nature of e−π||x−y||2 . Very notably, then,
it is possible with a pointwise approximation lemma to argue that the right-hand term of the
equality can be sufficiently well approximated by sampling independently a certain number of
dual vectors according to this probability distribution. These are the succinct approximations
of the distance function.

8.2.2 Idea behind dual attacks against LWE

While dual attacks against LWE can be viewed purely as a problem of finding the closest
point to a vector using construction A, these attacks can be explained without lattices. Let
us explain the basic principle behind these attacks and to simplify say that we rather target
the closely related decision variant of the LWE problem: given either (G, y = sG+ e) taken
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as an LWE instance or (G, y) where G is uniformly random as in LWE but y is now also
uniformly random in Zn

q , and the goal is to decide whether it was taken as a uniform instance
or an LWE instance. Note that in our setting, namely q = poly (n) and q prime, there are
polynomial search-to-decision reductions [Reg09, Lemma 4.2]. Denoting by C the code with
generator matrix G one can notice that a dual vector h ∈ C⊥ of small norm can be used
to get information about the error by leveraging the fact that in the uniform case ⟨y,h⟩ is
uniformly distributed in Zq while in the LWE instance case

⟨y,h⟩ = ⟨sG+ e,h⟩ = ⟨e,h⟩

is more biased toward small values of Fq as the norm of e and h are small. The idea is to
compute many short dual vectors and make a decision based on the values of the ⟨y,h⟩’s.
Many are needed to make a meaningful decision, and this number grows with the amount of
noise, that is with the norm of e and h. As a side note, the design rationale behind most of
those dual attacks is no longer driven by the duality equality of Proposition 58 but rather by
seeing the ⟨y,h⟩’s as independent variables, while this is imprecise this allows to get a first
rough idea on the number of dual vectors that will be required to make a meaningful decision.
In practice this number is exponential.

8.2.3 Computing the small dual vectors

Depending on the regime of the LWE problem there are different ways of producing the dual
vectors. In fact when the number of samples n is big (the LWE problem approaches the
LPN setting where we have an unbounded number of samples) combinatorial techniques such
as variations of the BKW algorithm (that was originally designed against LPN but that can
be adapted to LWE) prevail [BKW03, KF15, GJS15]. However, in the regime we target in
this thesis, that is say when the dimension k grows linearly in the number of samples n the
most efficient technique is done by embedding C⊥ onto the q-ary lattice Λq

(
C⊥
)
and finding

short vectors in that lattice using lattice tools. Note that this is completely sound as each
small vector of the q-ary lattice Λq

(
C⊥
)
yields a unique small vector of C⊥ by considering its

coefficient modulo q. Moreover, in all the regimes we consider in this thesis, this is really a
one-to-one correspondence in the sense that the norm of the produced dual vectors is well-
below q: the vectors produced really lie deep inside the Euclidean ball of radius q/2. Note
that alternatively, and to have a common vocabulary between dual attacks against LWE and
dual attacks to decode onto a general lattice, it is actually completely equivalent to produce
dual vectors of the q-ary lattice constructed with C as we have the following fact.

Fact 34. Let C be a q-ary linear code. We have that

Λq (C)∨ =
1

q
Λq

(
C⊥
)
.

8.2.3.1 Sieving in a sublattice

Starting from [ADPS16b], all the recent dual attacks [ADPS16b, LW21, GJ21, MAT22]
compute those dual vectors with a sieving algorithm [AKS01, NV08, MV, BGJ15, Laa15,
BDGL16]. At first those sievers were designed to find the shortest vector in a lattice but in
the process they naturally compute an exponential number of small dual vectors that can be
used. Recalling, sieving a lattice Λ ⊂ Rn is done by computing a starting list of N relatively
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small vectors (say by enumerating a BKZ or LLL reduced basis) and then say at each iteration
we combine (add or substract) all the pairs that lead to a resulting vector of smaller norm.
This iteration is repeated several times. Crucially, there is a geometric argument coming from
[NV08] that we must have take

N = (4/3)d

where d is rank of the lattice (the dimension of the subspace of Rn spanned by Λ) in order
for the list size to stay constant over the iterations, taking anything less than this leads to
an unwanted exponential decay of the list. One can then use the (4/3)d vectors coming from
the last list to get a large batch of small vectors of Λ.

In practice in the case of dual attacks, because the lattice coming from the LWE problem
Λ = Λq (C)∨ ∈ Rn is of full rank d = n (with overwhelming probability), performing a sieve
directly on Λ, we call that a full-sieve, is completely overkill, and leads to computing too much
vectors than necessary. To equilibrate the costs those attacks consider Λ′ ⊂ Λ a sublattice of
Λ of rank d < n and rather perform a sieve in that sublattice, bringing down the list size to
(4/3)d and hence the complexity of procedure. In [EJK20, GJ21, MAT22] Λ′ is selected by
first applying a BKZ reduction on a basis of Λ and select the d best vectors to form a basis
of Λ′.

8.2.4 Making a decision with a simple score function

One standard and simple enough way of quantifying how biased ⟨y,h⟩ when h ∈ C⊥ is to com-
pute cos (2π ⟨y,h⟩ /q). Clearly it is expected to be 0 in the uniform case and that is expected
to be bigger in the LWE instance case: this can heuristically be understood by recalling
that for small values of ⟨e,h⟩ we have by using a Taylor expansion that cos (2π ⟨e,h⟩ /q) ≈
1−O

(
(⟨e,h⟩ /q)2

)
. Basically those dual attacks computes many small dual vectors h ∈ C⊥

that are stored in a list W and aggregate those statistics in a score function. It is slightly
more convenient for our discussion here to rather consider W as a set of short vectors of
Λq (C)∨, hence the following definition where q does not appear (see Fact 34).

Definition 52 (Simple score function). Let W a set of vectors of Rn and y a vector of Rn

we define the score function as

FW (y) =
∑

h∈W

cos (2π ⟨y,h⟩) .

We can then decide that we are in the LWE case if the score F is higher than a certain well-
chosen threshold. Here traditionally a weight [AR04] can be applied to give more importance
to lower weights of dual vectors but, as mentioned in [LW21], this simpler score function
is sufficient for our cases of interest since the norm of the dual vector produced naturally
concentrates around some value.

Note additionally that, when the coordinates of the error are distributed as a discrete
Gaussian distribution and making the assumption that the ⟨y,h⟩ are realization of some
independent variables, then this function is closely related to the optimal Neyman–Pearson
test as shown by [LW21, Corollary 2 and Section 4.4] or by [GMW21, Appendix A] in a closely
related context. Note that [EJK20] also showed that under these independence assumptions
this score function allowed to make a good decision as long as

|W | = poly (n) /ε2
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where ε is the ”bias” in the LWE case, namely ε
def
= E (cos (2π ⟨e,h⟩)). The dual interpretation

of this score function (with weights) can be traced back to the previous duality formula given
by [AR04], but note that it applies only in the very special case when the dual vectors are
produced according to the distribution of the lemma.

8.2.5 Comparing modern dual attacks in code and lattice-based cryptog-
raphy

Here our goal here is to derive a quick analogy between the recent dual attacks in lattices and
the dual attacks we devised in this thesis. In particular, we disagree with the claim made in
[PS24, Page 3 and Appendix A] that some of these recent lattice-based attacks and our code
based attacks are fundamentally different: particularly we argue that the splitting strategy
used [Alb17, EJK20, GJ21, MAT22, PS24] is exactly the same splitting strategy that we used
in our attack and that can be traced back independently in lattice to the attack devised in
[Alb17] (in some other context) and in codes to a remark made in [DT17a].

8.2.5.1 LWE and small LWE

Say (G, y = sG+ e) is an LWE problem in dimension k and with n samples as defined in
Definition 47 with some secret s uniformly distributed in Zk

q . One can transform it into
its syndrome variant (H, b = He⊺) where H is a parity-check matrix of the code gen-
erated by G. Additionally, by computing H in systematic form, say H =

(
I(n−k) A

)

it is then possible to rewrite this last LWE problem as a ”small secret” LWE sample(
A, b = AeJn−k+1, nK + eJ1, n−kK

)
, all these reductions are standard. In the case of Kyber

and Dilithium, the problem are regularly given in this last form but this is completely equiv-
alent to the first generator matrix form. In general one can transform a small LWE problem
onto a standard generator matrix LWE problem as long as the coordinates of the error and
the secret of that small LWE problem have the same distribution. In some other context
such as for Homomorphic encryption [BGV12, CGGI20] however the situation is different
because the small LWE problem considered is such that the secret and the error coordinates
do not necessarily have the same distribution, and therefore we cannot directly transform it
into a standard generator matrix LWE problem as given in Definition 47, but provided that
we accept to tweak the previous definition by allowing that the coordinates of the error are
not distributed identically this is not a problem, in essence what matters in the following
discussion is that these coordinates are biased toward the small values of Zq.

8.2.5.2 Recent dual attacks

So, say we have an LWE problem (G, y = sG+ e) and denote by C the code generated by G.
Starting from [Alb17] in the small secret LWE context and then in [EJK20] for the standard
LWE problem those attacks start by splitting the support J1, nK in two complementary parts
P and N and reduce solving the original LWE problem to another LWE problem with
decreased dimension but increased noise, the secret in all these variants is related to eP . For
example in [Alb17, EJK20, MAT22] this is done by computing dual vectors h ∈ C⊥ which are
of small norm on N (and arbitrary on P) that yield the following new LWE sample

⟨y,h⟩ = ⟨eP ,hP⟩+ ⟨eN ,hN ⟩
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where the secret is given by eP and the noise is given by ⟨eN ,hN ⟩. This introduces the
same tradeoff that we benefited from in coding theory, namely as |P| increases, it allows
decreasing the norm of hN , hence naturally decreasing the number of required dual vectors
needed to recover the secret, but on the contrary we now have to solve this new small LWE
problem of dimension |P|. In [Alb17, EJK20] this problem is solved by naively enumerating
(with some tweaks to gain polynomial factors in [EJK20]) all the possible small candidates
r for the secret eP and computing naively for each of them an associated score and keeping
only the one whose associated score function is the highest. Problematically it is not efficient
to use directly an FFT, costing Õ

(
q|P|) operations, to compute the score in batch. Indeed

in all these use cases because the secret eP is small and the modulus q large, in practice
this leads to a huge number of useless computations. This is the reason why when the error
is sufficiently small the naive enumeration of the small candidates prevails. In [GJ21] a new
technique was introduced that allowed reducing the cost of the FFT step to Õ

(
2|P|) operations

by guessing only the coordinate of the secret eP modulo 2 at the cost of an increased noise.
It was claimed there that this new attack reduced the security of Kyber and Dilithium. Later,
a follow-up work by [MAT22] claimed to improve this last attack by achieving the same goal
but with a different modulus switching technique.

8.2.6 Usual analysis of these dual attacks

The analysis of the simple distinguisher presented above relies on understanding the distribu-
tion of the score function FW (y) where W ⊂ Λq (C)∨ depending on whether y is uniform or
y is planted and close to Λq (C). Note that from now on we assume that y is distributed uni-
formly in Rn/Λq (C) instead of being uniformly distributed in Zn

q . Even though these attacks
only deal with sublattices of q-ary lattices, [DP23b] made this simplifying assumption to stay
general in their discussion, because q is large we do not expect that this changes anything in
the conclusion.

The standard assumptions used to make the analysis of this dual attack and basically all
subsequent newer dual attacks as [DP23b] points out is to assume that the terms in the sum

FW (y) =
∑

h∈W

cos (2π ⟨y,h⟩)

are independent of each other. We focus in the following discussion only on the distribution
when y is uniform.

Heuristic 2 (Independence heuristics (See [DP23b, Heuristic 3])). Let Λ be a full rank lattice
of Rn. Let W ⊂ Λ∨ be a fixed set and let y be taken uniformly at random in Rn/Λ the random
variables (⟨h,y⟩)h ∈W are mutually independent.

Because the number N of dual vectors considered is big (exponential), one can now simply
from this assumption compute exponential tail bounds for F in both cases. Because the
number N of dual vectors considered is big (exponentially large), one can now simply from
this assumption compute exponential tail bounds for F in both cases. For example, if y ∼
U (Rn/Λ) then we can easily show that Ey (cos (2π ⟨y,h⟩)) = 0 and Vary (cos (2π ⟨y,h⟩)) =
1/2 and derive, from the central limit theorem the following normal approximation (See for
example [LW21, Lemma 6]).
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Model 6 (Usual model in the uniform target case when analyzing dual attacks). Let Λ be a
lattice. Let W ⊂ Λ∨ be a set of N dual vectors and let y ∼ U (Rn/Λ). The score function is
modeled as

FW (y) ≈ N (0, N/2) .

8.2.6.1 Contradictory regime

[DP23b] note that there is a regime where those assumptions are clearly false as there is a
small probability that y when taken uniformly at random in Rn/Λ ends up unusually close
to Λ, say closer than what would typically be expected when y is an LWE instance. Clearly,
this phenomenon is not captured by this assumption; see for example the following figure
showing the survival function of the score function P (FW (y) ⩾ x) when W is the output of
a full sieve over Λ∨.

0 100 200 300 400 500

−60

−40

−20

0 Independence Heuristics [DP23b, Figure 3]

Experiment [DP23b, Figure 3]

Figure 8.1: Survival function of the score function

The first zone where both curves match is called the waterfall zone and the second zone
when y is unusually close to a vector of Λ is called the waterfloor zone, this zone is not well
predicted by the independence assumption.

Now the key argument of [DP23b] is to notice that for dual attacks using a sieve, this
contradictory regime appears in practice well before what we see in Fig. 8.1, which was
obtained by performing a full sieve in Λ∨. Indeed, recall that for efficiency purposes, as
stated above, sieving is in fact done in a sublattice (Λ∨)

′ ⊂ Λ∨ of much smaller rank. As a
consequence

⟨y,h⟩ =
〈
y′,h

〉

where y′ is the orthogonal projection onto the space span
(
(Λ∨)

′)
and the question now is

really to distinguish whether y′ is close to a vector of the dual of (Λ∨)
′
. But now, because we

are in a lower dimensional subspace, the probability that a uniform target is relatively closer
to this lattice than an LWE target is much higher.

Coming back to the most recent attack [GJ21, MAT22] against LWE, [DP23b] argue their
analysis reduces to some variant of the distinguishing problem we described above where one
is given many uniform targets (the bad guesses coming from the splitting strategy) and one
coming from an LWE instance and the attack succeeds if we can identify which comes from
the LWE instance. [DP23b] then argue, looking at the parameters of the attack, that there
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will be with overwhelming probability some uniform target lying closer to the true LWE
instance.

8.2.6.2 Analyzing dual attacks when Gaussian sampling is used

Following the work of [DP23b], [PS24] proposed to use a Gaussian sampler [WL19] to pro-
duce dual vectors. Basically this procedure computes small vectors of the whole lattice Λ
whose weight is distributed according to a certain Gaussian distribution (essentially as in the
duality Proposition 58). This allows the suppression of the issue that comes from producing
dual vectors in a sublattice. With this and using a slight variation of the duality formula
of Proposition 58, [PS24] is able to fully prove some simplified variant of the most recent
dual attacks (essentially [MAT22] but by dropping modulus switching to make the analysis
tractable). Using the Gaussian sampler and sticking to a simpler variant does not make the
attack competitive but offers a theoretical framework for a rigorous analysis.

8.3 Contribution: predicting the behavior of the score func-
tion

In this contribution section we predict the behavior of the score function that was shown to
be badly predicted by the traditional independence assumptions, see Fig. 8.1.

Concurrent work. Note that, concurrently and independently to this work published in
[CDMT24] (in a slightly different form), [DP23a] posted a preprint predicting the behavior
of the score function using essentially the same tools, a.k.a Bessel function appears, but with
a different reasoning. Their work is more in depth. For example, we only focus here only on
predicting the behavior of the score function when y is uniform in Rn/Λ.

8.3.1 Model

Say for now and to simplify that we want to predict the behavior of the score function F
W̃

(y)
when all the dual vectors of norm smaller than a certain w are considered. Note that in
practice a full sieve does not return all the vectors of a lattice in an Euclidean Ball but is
often parametrized to return about a constant fraction of them, we will take that into account
later. Our reasoning is based on the following duality formula for making intervene Bessel
functions of the first kind. It is similar to the Poisson duality Proposition 58 but tailored to
the output distribution considered here.

Fact 35. We have that

∑

h∈Λ∨ : ||h||⩽w

cos (2π ⟨y,h⟩) =
∑

h∈Λ∨

e−2iπ⟨y,h⟩1Ballnw (h)

Proof. By definition of cos,
∑

h∈Λ∨ : ||h||⩽w cos (2π ⟨y,h⟩) = (1/2)
∑

h∈Λ∨ : ||h||⩽w e
−2iπ⟨y,h⟩ +

e2iπ⟨y,h⟩. The result follows by using the fact that h ∈ Λ⇔ −h ∈ Λ∨.

This can be seen as the lattice-based counterpart of the duality formula Proposition 39
we devised in coding theory that makes intervene Krawtchouk polynomials. Recalling, for
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a Schwartz function (that is sufficiently regular, in particular continuous) f , the Poisson
summation formula [SW71, Chapter VII, Corollary 2.6] states that

∑

h∈Λ∨

e−2iπ⟨y,h⟩f(h) =
1

V (Λ∨)

∑

c∈Λ+y

f̂ (c) . (8.3)

Now our function of interest here is the indicator of an Euclidean ball whose Fourier transform
classically relate to Bessel function of the first kind.

Fact 36 ([DDRT23, Fact 4.11]). For any x ∈ Rn we have that

1̂Ballnw (y) =

(
w

||y||

)n/2

Jn/2 (2πw ||y||)

where Ballnw
def
= {x ∈ Rn : ||x|| ⩽ w} and where the Fourier transform of f : Rn → C is

defined as f̂ (x)
def
=
∫
Rn f (z) e

−2iπ⟨x,z⟩dz and where Jn is the Bessel function of the first kind
of order n.

In particular, because the indicator is not continuous we cannot directly apply Poisson
summation formula, we could convolute it with a concentrated Gaussian as done in [Pin08,
Section 4.5.2] at the cost of a small correction factor, but we rather simply make the approx-
imation that we have the equality.

Approximation 1. Let n ∈ N and w ∈ R. Let Λ be a lattice in Rn and let W̃
def
= Λ∨⋂{x ∈

Rn : ||x|| ⩽ w } and let F
W̃

(y)
def
=
∑

w∈W̃
cos (2π ⟨y,h⟩). We make the approximation that

F
W̃

(y) =
1

V ol (Λ∨)

∑

x∈Λ+y

(
w

||x||

)n/2

Jn/2 (2πw ||x||)

where Jn is the Bessel function of the first kind of order n.

Very generally we argue heuristically that when Λ or y are random this score function can
be modeled as the sum of two simple random variables: first, the term of the sum accounting
for the smallest vector in Λ+y, this accounts for the closest lattice vector to y. Second there
are some small variations around it accounting for the normal like behavior of the rest of the
sum.

One of the rationale for the following model stems from assuming that when computed by
a full sieve, the N dual vectors are produced uniformly at random in a certain ball intersected
with the lattice. We give more details on how this model was precisely derived in Section 8.3.4.

Model 7. Let Λ be some random full-rank lattice of Rn of volume V . Let W be taken
uniformly at random from the subset of {x ∈ Rn : ||x|| ⩽ w } of size N . Let y ∼ U (Rn/Λ).
We make the model that

FW (y) = Xfloor +Xfall

where

Xfloor = N
√
nπ

(
n

2πewxmin

)n/2

Jn/2 (2πwxmin)

Xfall ∼ N (0, N/2)
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and where

xnmin ∼ Exponential

(
V

V (Balln1 )

)

where we recall that V (Balln1 ) = πn/2/Γ (1 + n/2).

We show in Fig. 8.2 that this model seems to reasonably predict the experimental survival
function of the score function in the uniform target setting that was observed by [DP23b,
Figure 3]. We give here some details on how we instantiate the model to make the actual
prediction. First in [DP23b, Figure 3] the lattice Λ (In [DP23b] this lattice is called Λ′) in
which the small weight dual vectors are computed is in fact a sparsification (this was done
as in [GJ21]) of a random q-ary lattice coming from the original LWE problem. The only
important remark here is that Λ is random but has a fixed volume V that can either easily be
computed from the parameters or directly from its basis B given in the experimental results
of [DP23b].

8.3.2 Results

Second, we reused the datasets of [DP23b, Figure 3] and extracted the number of dual vectors
N and heuristically chose w as the mean length of the dual vectors experimentally obtained.
This is only a rough estimate that does not exactly correspond to what w means in our model
but we see in practice that it is sufficient. In the next chapter we will refine this much more
and model w theoretically.

Independence Heuristics [DP23b, Figure 3]

Experiment [DP23b, Figure 3]
Prediction waterfloor : Xfloor

Prediction score function : Xfloor +Xfall
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(a) n = 60, w = 0.0320, q = 3329, N = 5040,
V = 6.12× 10110
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−20
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(b) n = 80, w = 0.0376, q = 3329, N = 89494,
V = 8.19× 10146

Figure 8.2: Prediction of the score function in the uniform target case.

8.3.3 Discussion

The reason why Bessel functions did not appear in previous analysis was because the bias of
⟨y,h⟩ was computed over the choice of y and h was considered as a fixed vector. Heuristically
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because y is random but fixed once and for all when computing the score function it seems
more natural to consider h as the random vector. In that case say h is taken uniformly at
random in Ballnw (Or in Ballnw

⋂
Λ∨ for a random lattice Λ with the right distribution) then

the bias of the main quantity is

Eh (cos (2π ⟨y,h⟩)) =
1̂Ballnw (y)

V (Ballnw)
and where the Fourier transform is defined and given in Fact 36 and makes intervene Bessel
functions. This is the lattice-based equivalent of Krawtchouk polynomials intervening in the
bias of ⟨y,h⟩ in coding theory. Indeed, recalling, we have that when h is taken uniformly in

Snw
def
= { x ∈ Fn

2 : |x| = w} the Hamming sphere of radius w, then

E
(
(−1)⟨y,h⟩

)
=

1̂Sn
w
(y)

|Snw|
=
K

(n)
w (t)(
n
w

)

where f̂ (y)
def
=
∑

x∈Fn
2
f(x)(−1)⟨x,y⟩ is the discrete Fourier transform here.

8.3.4 Justification for the model

We achieve this model through a series of approximations. First we make the approximation
that the score function is equal to its conditional expectation where the expected value is
taken over the choice of W (see Model 7) that is:

FW (y) ≈ EW (FW (y))

where W̃
def
= Λ∨⋂{x ∈ Rn : ||x|| ⩽ w }. This allows us to write that

FW (y) ≈ N∣∣∣W̃
∣∣∣
F

W̃
(y) .

Now, using the Gaussian Heuristic Heuristic 1 we heuristically estimate that

∣∣∣W̃
∣∣∣ ≈ wn

V (Λ∨)

(2πe)n/2√
nπnn/2

Now, using the fact that we always have that

V (Λ) = 1

V (Λ∨)

and using all those previous approximations with the fact that from Approximation 1 we have
that

F
W̃

(y) ≈ 1

V (Λ∨)

∑

x∈Λ+y

(
w

||x||

)n/2

Jn/2 (2πw ||x||)

we get the following approximation for F :

FW (y) ≈ N√nπ
∑

x∈Λ+y

(
n

2πew ||x||

)n/2

Jn/2 (2πw ||x||) .
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Prediction of the waterfloor (Xfloor) Basically we argue that the waterfloor phenomenon
can be encompassed by considering the smallest vector of Λ + y and considering the term in
the sum related to the smallest vector

N
√
nπ

(
n

2πewxmin

)n/2

Jn/2 (2πwxmin)

where
xmin

def
= min

λ∈Λ
||λ+ y|| .

We make the classical model that xmin follows an exponential distribution of good expected
value. This comes from the fact that, refining the Gaussian heuristic slightly we can actually
make the model that the number of lattice point inside an Euclidean ball follows a Poisson
distribution of right expected value:

∣∣∣(Λ \ { 0})
⋂

Ballnt

∣∣∣ ∼ Poisson

(V (Ballnt )
V (Λ)

)
.

This model is motivated by the fact it was shown in [Rog56] that this quantity indeed weakly
converges to this Poisson distribution for random lattices in the sense of [Sie45]. With this
model, it is clear that the survival function of the shortest vector can be written as follows:

P (xnmin > zn) = P (xmin > z)

= P
(
(Λ \ { 0})

⋂
Ballnz = 0

)

= e
−V(Ballnz )

V(Λ)

= e
−
(

V(Balln1 )
V(Λ)

)
zn

.

This is exactly the survival function of an exponential distribution, hence we model the floor
as

xnmin ∼ Exponential

( V (Λ)
V (Balln1 )

)
.

Prediction of the waterfall (Xfall) We observe in practice that the waterfall zone is
well-predicted by the independence heuristic, hence in that zone we keep the standard normal
model

Xfall ∼ N (0, N/2) .

Predicting the whole score function A natural idea to predict the experimental curve
on the whole support is therefore to take the convolution of these two distributions Xfloor and
Xfall. Indeed, we observe by comparing our model to the experiments that for any support
point, there is always one distribution which exponentially dominates the other one.
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Chapter 9

Assessing the impact of a variant of
MATZOV’s dual attack

Summary

The dual attacks on the Learning With Errors (LWE) problem are currently a subject of
controversy. In particular, the results of [MAT22], which claim to significantly lower the
security level of Kyber [SAB+20], a lattice-based cryptosystem currently being standardized
by NIST, are not widely accepted. The analysis behind their attack depends on a series of
assumptions that, in certain scenarios, have been shown to contradict established theorems
or well-tested heuristics [DP23b].

In this chapter, we introduce a new dual lattice attack on LWE, drawing from ideas in
coding theory. Our approach revisits the dual attack proposed by [MAT22], replacing modulus
switching with an efficient decoding algorithm. This decoding is achieved by using polar
codes over Zq, and we confirm their strong distortion properties through benchmarks. This
modification enables a reduction from small-LWE to plain-LWE, with a notable decrease in
the secret dimension. Additionally, we replace the enumeration step in the attack by assuming
the secret is zero for the portion being enumerated, iterating this assumption over various
choices for the enumeration part.

We make an analysis of our attack in the spirit of what was done in [CDMT24].
Lastly, we assess the complexity of our attack onKyber by showing that the security levels

for Kyber-512/768/1024 are 3.5/11.9/12.3 bits below the NIST requirements (143/207/272
bits) in the same nearest-neighbor cost model as in [SAB+20, MAT22]. All in all the cost of
our attack matches and even slightly beat in some cases the complexities originally claimed
by the attack of [MAT22].

Disclaimer 1. This chapter is exactly the paper [CMST25] with no rewriting. In particular,
in contrast with the rest of this thesis, the vectors in this chapter are column vectors.
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9. Assessing the impact of a variant of MATZOV’s dual attack

9.1 Introduction

9.1.1 Background

9.1.1.1 The LWE problem

The Learning With Errors (LWE) problem originally introduced by Regev in [Reg05]. It
revolves around the task of finding s ∈ Zn

q given (A,b) ∈ Zm×n
q ×Zm

q with b = As+ e where
e is of small Euclidean norm. This problem can be seen as the decoding problem for the

code C(A) generated by the columns of A (i.e. C(A)
def
= {Ax, x ∈ Zn

q }) and the Euclidean
distance, where we are asked to find the codeword (i.e. the element of C) which is close in
Euclidean distance to b. We are particularly interested in the case where s is short too which
is called the small LWE problem. This problem has emerged as a fundamental challenge in
cryptography. Notably, it underpins the construction of various cryptographic primitives and
is conjectured to withstand attacks from quantum computers [LPR10]. Our motivation for
exploring this problem stems particularly from the need to gauge the security level of Kyber,
a lattice-based cryptosystem that is being standardized by the NIST1.

9.1.1.2 Dual attacks

The most efficient cryptanalysis techniques against LWE(-like) problems are “primal” and
“dual” lattice attacks. The primal attack corresponds to lattice reduction being performed on
the “primal” lattice Λq(A) which is Construction A of the q-ary lattice obtained from C(A),
namely

Λq(A) = {y ∈ Zm : ∃c ∈ C(A) such that y = c mod q}
= {y ∈ Zm : ∃s ∈ Zn

q such that y = As mod q}.

Dual attacks mean that lattice reduction is performed over the dual lattice Λq(A)∨, which in
this case, up to a q-multiplicative factor, is nothing but Construction A applied to the dual

code C(A)⊥
def
= {x ∈ Zm

q : A⊺x = 0}:

Λq(A)∨
def
= {x ∈ Rm : ⟨x,y⟩ ∈ Z, ∀y ∈ Λq(A)}
= 1

q{x ∈ Zm : A⊺x = 0 mod q}.

The lattice {x ∈ Zm : A⊺x = 0 mod q} is known under the name of the orthogonal lattice

of A, i.e. Λ⊥
q (A)

def
= {x ∈ Zm : A⊺x = 0 mod q}.

Dual attacks were introduced in [AR04]. In its simplest form, a dual attack is a distin-
guisher attack which is given either (A,A · s+e) or (A,u) where (A,u) are uniform and e is
short, and answers if we are in the first or the second case. It starts by computing many short
xj ’s in the dual lattice Λq(A)∨ and the associated ⟨xj ,b⟩’s. Those short vectors are obtained
by lattice reduction of Λq(A)∨ or what is basically equivalent Λ⊥

q (A). In the second case, we
expect that these scalar products are uniformly distributed in Zq. On the other hand in the
first case since ⟨xj ,b⟩ = ⟨xj ,As+ e⟩ = ⟨A⊺xj , s⟩ + ⟨xj , e⟩ = ⟨xj , e⟩ mod q, we get scalar
products of small vectors which are tilted towards small entries.

There have been a sequence of developments in dual attacks, for instance by combining
these attacks with a guessing stage [Alb17] consisting in splitting the support of s in two

1https://csrc.nist.gov/projects/post-quantum-cryptography
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parts

(
senu
slat

)
and guessing one part of this support. A is split accordingly A = [Aenu Alat].

This allows to only perform lattice reduction on Construction A of the code generated by[
Im
A⊺

lat

]
. That means we only look for short vectors

(
x
ylat

)
such that Alat

⊺x = ylat mod q.

Define yenu by yenu = A⊺
enux. The point is that looking for such vectors is faster because of

the dimension reduction. We then guess senu and check whether the ⟨x,b⟩− ⟨yenu, senu⟩’s are
tilted towards small values or not. This comes from the fact that

⟨x,b⟩ = ⟨x,Aenusenu +Alatslat + e⟩ = ⟨A⊺
enux, senu⟩+ ⟨A⊺

latx, slat⟩+ ⟨x, e⟩
= ⟨yenu, senu⟩+ ⟨ylat, slat⟩+ ⟨x, e⟩ mod q (9.1)

In [EJK20] this was generalized to broader secret distributions paired with additional im-
provements on the exhaustive search. [GJ21] applied a Fast Fourier Transform-style algorithm
to the search over senu and the search space is significantly reduced by roughly considering
only the most significant bits of senu. [MAT22] replaced this step with “modulus switching”
[BV11, AFFP14], yielding significant performance gains. The algorithm can be described as
follows.

The MATZOV template. Let nenu, nfft, nlat be some positive integers such that nenu +
nfft + nlat = n. The matrix A and the secret s are divided accordingly:

A
def
=

[
Aenu Afft Alat

]
∈ Zm×nenu

q × Zm×nfft
q × Zm×nlat

q , (9.2)

s
def
=



senu
sfft
slat


 ∈ Znenu

q × Znfft
q × Znlat

q . (9.3)

The objective is to guess the part senu of the secret vector but to do that, we need to be
able to distinguish between a right and a wrong guess. By performing lattice reduction on the

lattice generated by

[
Im 0
A⊺

lat qInlat

]
, we obtain a set S of vectors

(
x
y

)
such that x and y are

of small Euclidean norm in Zm
q and Znlat

q respectively and are such that y = A⊺
latx. Similarly

to Equation (9.1), we have

⟨x,b−Aenusenu⟩ −
〈
A⊺

fftx, sfft
〉
= ⟨x, e⟩+ ⟨y, slat⟩ . (9.4)

Since (x,y) and (e, slat) are short, Equation (9.4) is biased towards zero, raising the issue of
finding efficiently senu and sfft such that the left-hand term in (9.4) is small.

One can notice that (9.4) actually gives us many small-LWE samples2 (a′, b′) ∈ Znfft
q ×Zq

with secret s′ ∈ Znfft
q and error e′ ∈ Zq where

a′
def
= A⊺

fftx, (9.5)

b′
def
= ⟨x,b−Aenusenu⟩ , (9.6)

s′
def
= sfft, (9.7)

e′
def
= ⟨x, e⟩+ ⟨y, slat⟩ . (9.8)

2By using N samples {(a′
i, b

′
i)}i∈J1,NK, we can rewrite the LWE instance with a matrix A′ def

=
[
a′
1 · · · a′

N

]
and a vector b′ def

= (b′1 · · · b′N )⊺.
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Thus, we can distinguish a correct and an incorrect guess for senu and recover sfft by solving
this small-LWE instance. Since nenu is small enough, senu can be exhaustively searched. Once
senu is identified, sfft is recovered by solving the above small-LWE instance. Specifically, this
involves exhaustively searching for a z ∈ Znfft

q such that the vector
(
⟨x,b−Aenusenu⟩ −

〈
A⊺

fftx, z
〉)

(x,y)∈S

has a small Euclidean norm. One approach to speed up the search is to use a Fourier trans-
form. The method introduces an evaluation function E, which assigns a real value to each
guess s̃enu ∈ Znenu

q :

E(s̃enu)
def
= max

z∈Znfft
q

Fs̃enu(z) (9.9)

where
Fs̃enu(z)

def
=

∑

(x,y)∈S

cos
(
2π
q

(
⟨x,b−Aenus̃enu⟩ −

〈
A⊺

fftx, z
〉))

. (9.10)

MATZOV’s algorithm essentially consists in finding s̃enu ∈ Znenu
q such that E(s̃enu) ⩾ T ,

where T ∈ N is a threshold chosen around the expected value of E when evaluated on the
correct guess, namely T ≈ E(senu). The key idea is that we expect E(senu) to be signif-
icantly larger than E(s̃enu) when s̃enu is incorrect, i.e. when s̃enu ̸= senu. Indeed, for the
correct guess, Equation (9.4) shows that ⟨x,b−Aenusenu⟩ −

〈
A⊺

fftx, sfft
〉
mod q is biased to-

ward zero. Consequently, each term in the sum in Equation (9.10) will be biased toward 1,
resulting in a large total value for E (Fsenu(sfft)). On the other hand, if s̃enu ̸= senu, then for
all z ∈ Znfft

q , ⟨x,b−Aenus̃enu⟩ −
〈
A⊺

fftx, z
〉
mod q is uniformly distributed over Zq, meaning

that E (Fs̃enu(z)) = 0.

Modulus switching. The point of using the evaluation function E is that Fs̃enu can be
computed efficiently with a Fast Fourier Transform (FFT). However, the large input space
Znfft
q makes the FFTcostly. This size can be reduced, though at the cost of slightly weakening

the bias of Fsenu(sfft).
To do that, MATZOV proposes to reduce the size of the field Zq by using a modulus

switching technique: instead of considering Fs̃enu , they consider

F
(ms)
s̃enu

: Znfft
p −→ R
z 7−→

∑

(x,y)∈S

cos
(
2π
p

(
p
q ⟨x,b−Aenus̃enu⟩ −

〈⌊
p
qA

⊺
fftx
⌉
, z
〉))

where p ⩽ q is a smaller modulus and ⌊·⌉ stands for the integer rounding operation. Thus,

for the wrong guess s̃enu ̸= senu and for all z ∈ Znfft
p , F

(ms)
s̃enu

(z) is still expected to be 0 whereas
for the good guess senu we have, from Equation (9.4),

F
(ms)
senu (sfft mod p) =

∑

(x,y)∈S

cos
(
2π
p

(
p
q ⟨x, e⟩+

p
q ⟨y, slat⟩+

〈
p
qA

⊺
fftx−

⌊
p
qA

⊺
fftx
⌉
, sfft

〉))

=
∑

(x,y)∈S

cos
(
2π
q

(
⟨x, e⟩+ ⟨y, slat⟩+

〈
A⊺

fftx− q
p

⌊
p
qA

⊺
fftx
⌉
, sfft

〉))
.

Even if it means reducing the threshold a little, we can still expect F
(ms)
senu (sfft mod p) ⩾ T

since the additional term
〈
A⊺

fftx−
q
p

⌊
p
qA

⊺
fftx
⌉
, sfft

〉
is also biased toward zero. Indeed, it is

the scalar product of two short vectors; in particular:

dms
def
= E

(∣∣∣A⊺
fftx− q

p

⌊
p
qA

⊺
fftx
⌉∣∣∣
)
≈ q

p

√
nfft
12 (9.11)

225



9.1. Introduction

since we can make the approximation that each of the coordinates of p
qA

⊺
fftx −

⌊
p
qA

⊺
fftx
⌉
are

drawn uniformly at random in [−0.5, 0.5].
Finally, [MAT22] claims that the security level of NIST candidates like Kyber could be

significantly lowered. However, this result is not widely accepted, as the analysis relies on
assumptions which turn out to be false according to [DP23b].

9.1.1.3 Dual attacks in code-based cryptography their analysis

Dual attacks in lattice based cryptography can be viewed as the lattice based analogue of
statistical decoding in code-based cryptography which dates back to Al Jabri [Jab01]. In this
case, short codewords h in the dual code are computed, where short is with respect to the
Hamming distance. The goal is to solve the decoding problem b = As+e where b and A are
given whereas s and e are unknown and e is of small Hamming weight (rather than of small
Euclidean norm for the LWE problem). The issue is to recover s. Here too, the inner product
⟨h,b⟩ is biased towards zero. This is used to solve the decoding problem very much in the
same way as it is used to solve the LWE problem. Similarly to what happened in lattice
based cryptography, dual attacks became much more effective through a splitting strategy
which allowed to look for short codewords in a smaller code [CDMT22]. In an analogous
way to what was done in lattice based cryptography, these attacks were analyzed by making
assumptions and in particular independence assumptions [CDMT22, Ass. 3.7] which are
close to the independence assumptions made for analyzing MATZOV’s attack [MAT22, Ass.
4.4, Ass. 5.8]. In the lattice based case, these assumptions were shown to contradict some
theorems in certain regimes or well-tested heuristics in some other regimes [DP23b].

Note that it was already noticed in [CDMT22, §3.4] that the i.i.d. Bernoulli model used
for analyzing dual attacks in code-based cryptography is not always accurate. However, it
was conjectured there that the difference between this ideal model and experiments has no
impact on the asymptotic analysis of the decoding based on this model. This was proved to
be wrong in [MT23]. However, this paper gave at the same time an approach for analyzing
rigorously dual attacks in coding theory by bringing in a duality equation [MT23, Prop. 1.3]
shedding some light on the fundamental quantities manipulated by the decoder. This allowed
to obtain a proof of the correctness of a slightly modified version of the dual attack proposed
in [CDMT22]. Dual attacks for solving the decoding problem have been further improved in
[CDMT24] and the approach of [MT23] has been carried over to this improved dual attack.
[CDMT24] can be viewed as a somewhat improved version of the MATZOV attack in the
context of codes, where the modulus switching part is replaced by an optimal lossy source
encoder. It is worthwhile to note that [CDMT24, Section 8] shows that the fundamental
duality equation [MT23, Prop. 1.3] used to analyze dual attacks for codes also carries over
to the lattice setting and could serve as a tool to analyze dual attacks for lattices. Moreover,
at the same time, a series of papers [DP23a, PS24] provide some new ideas to properly
analyze dual attacks in lattices. In particular, concurrently to [CDMT24, Section 8], [DP23a]
provided, in a more in-depth work and using comparable but not identical reasoning, similar
heuristics to predict the behavior of these attacks.

9.1.2 Our contribution

Our purpose here is to come up with a variation of the MATZOV algorithm, that improves it
and which also helps analyzing it. This is obtained by a lattice based analogue of [CDMT24],
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replacing the modulus switching by lossy source encoding/using the relevant quantizer based
on polar coding. We use the duality approach [MT23, CDMT24, DP23a] to analyze our new
dual attack to avoid relying on independence assumptions. This duality approach allows us
to derive a new simple heuristic that is backed up by experimental evidence and which is
essentially a generalization of the heuristics made in [CDMT24, DP23a]. All in all, it turns
out that the complexities claimed in [MAT22] can be achieved and even slightly surpassed
with our algorithm, which dents the parameters of Kyber by a few bits, as predicted in
[MAT22].

9.1.2.1 A lossy source coding approach

Similarly to [CDMT24] we observe that the FFT approach factorizing the common compu-
tations for computing all the Fs̃enu(z) for z ∈ Znfft

q is probably suboptimal, since the z such
that Fs̃enu(z) is maximum is likely to be attained for z = sfft which is of rather small norm.
The problem is that the fast FFT algorithm does not leverage the fact that we only need to
compute it for small z’s which have the same Euclidean norm as sfft. In a sense, the modulus
switching approach of [MAT22] is a way to alleviate this phenomenon since sfft mod p is
more uniformly distributed in Znfft

p than s is in Znfft
q . A further refinement of this method,

in the spirit of [GJS15, Section 5.5], involves approximating the relevant z ∈ Znfft
q ’s by close

enough codewords. This also allows to reduce the size qnfft of the space over which the fast
Fourier transform is applied.

Basically the lossy source/quantizing approach can be explained as follows. We choose a

linear code Clsc generated by the matrix G ∈ Znfft×kfft
q , i.e. Clsc def

= {Gulsc : ulsc ∈ Zkfft
q } so

that we can find efficiently, for any yfft ∈ Znfft
q , a ulsc ∈ Zkfft

q such that Gulsc is close to yfft.
Gulsc can be viewed as a “quantization” of yfft and Clsc as a lossy source code or code used
for quantization. We apply this quantization to all pairs of short dual vectors (x,y) in S
and compute for all such x’s a corresponding ulsc ∈ Zkfft

q such that
∣∣A⊺

fftx−Gulsc

∣∣ ≈ dlsc (9.12)

where dlsc is the decoding distance of the lossy source code. The point is that the left hand
term in (9.4) can be rewritten as

⟨x,b−Aenusenu⟩ −
〈
A⊺

fftx, sfft
〉

= ⟨x,b−Aenusenu⟩ − ⟨Gulsc, sfft⟩ − ⟨elsc, sfft⟩ (9.13)

= ⟨x,b−Aenusenu⟩ − ⟨ulsc,G
⊺sfft⟩ − ⟨elsc, sfft⟩(9.14)

where elsc
def
= A⊺

fftx−Gulsc. If we use (9.4) we see that

⟨x,b−Aenusenu⟩ − ⟨ulsc,G
⊺sfft⟩ = ⟨x, e⟩+ ⟨y, slat⟩+ ⟨elsc, sfft⟩ . (9.15)

So we expect that the left-hand term ⟨x,b−Aenusenu⟩ − ⟨ulsc,G
⊺sfft⟩ is still small. In other

words, we once again performed a reduction to an LWE problem. Indeed, Equation (9.15)
can be interpreted as an LWE sample (a′, b′) ∈ Zkfft

q ×Zq, with secret s′ ∈ Zkfft
q and error term

e′ ∈ Zq, where

a′
def
= ulsc, (9.16)

b′
def
= ⟨x,b−Aenusenu⟩ , (9.17)

s′
def
= G⊺sfft, (9.18)

e′
def
= ⟨x, e⟩+ ⟨y, slat⟩+ ⟨elsc, sfft⟩ . (9.19)
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The advantage of this reduction is that it drastically reduces the dimension of the problem.
However, it is important to note that the secret s′ is no longer small, but uniformly distributed
over Zkfft

q ; thus, this new problem becomes a plain-LWE problem. We can now solve it using
a technique similar to the one previously described. This motivates to replace Fs̃enu by

F
(lsc)
s̃enu

: Zkfft
q −→ R
z 7−→

∑

(x,y)∈S

cos
(
2π
q (⟨x,b−Aenus̃enu⟩ − ⟨ulsc, z⟩)

)
. (9.20)

Again, for the wrong guess s̃enu ̸= senu and for all z ∈ Zkfft
p , F

(lsc)
s̃enu

(z) is still expected to be
0 whereas for the good guess senu we have, from Equation (9.15), that

F
(lsc)
senu (G⊺sfft) =

∑

(x,y)∈S

cos
(
2π
q (⟨x, e⟩+ ⟨y, slat⟩+ ⟨elsc, sfft⟩)

)
(9.21)

which is still expected to be large because the additional term ⟨elsc, sfft⟩ is biased towards zero.

The pro and cons of this approach is that on the positive side:
– It allows us to choose large values for nfft, since we are now not limited by the qnfft term in
the complexity coming from evaluating Fs̃enu but by a smaller qkfft term. This in turn allows
us to decrease the nlat term and therefore the cost of lattice reduction.
– It allows us to solve radically the problem that sfft is not uniformly distributed in Znfft

q .

If kfft is low enough, it can namely be verified that the likely argmax G⊺sfft of F
(lsc)
senu (z) is

uniformly distributed in Zkfft
q . This solves one source of suboptimality of this approach.

On the negative side, it increases the noise term in the right-hand side of (9.15) expressing
the quantity ⟨x,b−Aenusenu⟩ − ⟨ulsc,G

⊺sfft⟩. This is due to the additional term ⟨elsc, sfft⟩
which appears there. We therefore expect F

(lsc)
senu (G⊺sfft) to be smaller than Fsenu (sfft) and will

need to make S bigger to distinguish it from other values of F
(lsc)
s̃enu

(z).

The last point above makes it clear that we want to make the additional noise term
⟨elsc, sfft⟩ as small as possible. But of course for a given kfft, there is a lower bound of what
we can achieve. It can namely be proven (see Equation (9.34) in Section 9.2) that the best
we can do is to choose, for a given kfft, the decoding distance dlsc such that

dlsc ≈ q1−
kfft
nfft ·

√
nfft
2πe

. (9.22)

This can be compared to the modulus switching approach. For a same FFT complexity,
meaning roughly that kfft is such that pnfft = qkfft , we have

dms ≈
q

p

√
nfft
12
≈ 0.28867

q
√
nfft
p

(9.23)

dlsc ≈
q

p

√
nfft
2πe
≈ 0.24197

q
√
nfft
p

(9.24)

Equations (9.23) and (9.24) show that the lossy source coding approach yields a smaller
value for |⟨elsc, sfft⟩| than modulus switching, as dlsc < dms. However, unlike modulus switch-
ing, we need to construct a code that can be decoded efficiently up to the optimal decoding
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distance dlsc. A classical approach involves using a Cartesian product of small random codes.
This solution achieves asymptotically the optimal decoding distance dlsc but with a sub-
exponential complexity that is not so negligible (super-polynomial). In Section 9.3.3, we
propose an alternative solution using polar codes, which can achieve a decoding distance very
close to dlsc in quasi-linear time.

It should be noted that the modulus switching strategy can really be viewed as a quantizing

approach. In the modulus switching technique, we approximate A⊺
fftx by q

p

⌊
p
qA

⊺
fftx
⌉
, i.e. we

quantize/approximate a point in Rnfft by a point in the lattice q
pZ

nfft . On the other hand, in
the case of the lossy source code approach we approximate a point in Znfft

q by a codeword in
Clsc. If we express this as a quantizer, this means that we quantize/approximate a point in
Rnfft by a lattice point in Construction A applied to Clsc. The second quantizer just turns
out to be much better than the first quantizer in terms of the distortion/quantizing distance
which is achieved.

9.1.2.2 Getting rid of independence assumptions and results

In [MAT22], it is argued that dual attacks can substantially lower the security level of certain
NIST candidates, such as Kyber. However, this claim remains contested, as their analysis
relies on assumptions that, according to [DP23b], have been proven to be incorrect. Specifi-
cally, [DP23b] highlights a flawed independence assumption, which can be stated as follows:

Assumption 3 (Independence Assumption). Let Λ be a full-rank lattice of dimension n, and
let r be a random variable distributed according to Unif(Rn/Λ) or Bαn, where the Bα are i.i.d.
centered binomial variables. Assume that

(
e2iπ⟨w,r⟩)

w∈Λ are mutually independent.

In dual attacks, evaluation functions involve sums of terms like those described in the
assumption. Assuming independence when the terms are not independent can lead to sig-
nificant miscalculations in estimating false positives passing the evaluation function. This
issue is highlighted in [DP23b], which shows that predictions of such scoring functions are
inaccurate in certain regimes.

Recent papers [DP23a, MT23, CDMT24] present new approaches to analyze dual attacks
accurately, without relying on the independence assumption. Specifically, let

F (x)
def
=

∑

w∈Λ∩B

e2iπ⟨w,r(x)⟩ (9.25)

define a scoring function, where Λ is a full-rank lattice of dimension n, B ⊆ Rn a set of small
vectors, and r(x) ∈ Rn, all depending on the specific dual attack method under consideration.
It can be observed that F (x) remains invariant when any vector from the dual lattice of Λ is
added to r(x). Indeed, for any w∨ ∈ Λ∨, we have

〈
w, r(x) +w∨〉 = ⟨w, r(x)⟩+

〈
w,w∨〉 = ⟨w, r(x)⟩ . (9.26)

Thus, it is reasonable to conclude that ⟨w, r(x)⟩ depends on the structure of the coset
Λ∨ + r(x), and in particular, on its shortest vector. One way to see this is by making
the following approximation coming from the Poisson summation formula (see the discussion
in Section 8.3.1)

F (x) ≈ 1

V (Λ) ·
∑

w∨∈Λ∨+r(x)

1̂B

(
w∨) . (9.27)
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In [DP23a, CDMT24], it was observed that the Fourier transform of the indicator function
can be expressed in terms of Bessel functions, depending only on the input’s length. Con-
sequently, F (x) is essentially related to the length enumerator of the vectors in Λ∨ + r(x),
particularly the shortest. We distinguish between correct and incorrect candidates by noting
that r(x) is notably small when x is the desired vector, and random otherwise. Therefore,
for the correct guess, the shortest vector in Λ∨ + r(x) is r(x), while for incorrect guesses, it
corresponds to the typical shortest vector in a random coset of a random lattice.

This approach allowed us to analyze our evaluation functions thoroughly (see Section
9.4). However, to simplify calculations, we make approximations that we validate through
simulations. Finally, we control the number of false positives in our attack, ensuring they
remain negligible. By doing so, we achieve results close to those of MATZOV (see Section
9.5). Furthermore, as they did previously, we apply our attack to the parameters of Kyber
and confirm the claim in [MAT22], which asserts that Kyber’s security does not meet the
NIST’s requirements.

9.2 Notation and preliminaries

9.2.1 Basic notation

We denote vectors by bold lowercase letters and matrices by bold uppercase letters, e.g. v
and M. We consider the vectors as column vectors and therefore row vectors are denoted v⊺.
The concatenation of vectors x and y is denoted as (x,y). The components of the vector
x ∈ Rn are denoted by xi for i ∈ J1, nK where Ja, bK are the integers between a and b.

For any x ∈ Zq, denote by x̂ ∈ x+ qZ the unique integer such that |x̂| ⩽ q−1
2 . We extend

this notion to vectors x ∈ Zn
q componentwise. In other words, x̂ is the lift from Zq to Z

centered on 0. We define |x| for x ∈ Zn
q as

|x| def
= |x̂| def

=

√√√√
n∑

i=1

x̂i
2 def

=

√√√√
n∑

i=1

argmin
j∈Z

((xi + jq)2) (9.28)

9.2.2 The Learning With Error problem

Let us define more formally the LWE problem here. It starts by defining an LWE oracle that
produces samples according to the following distribution:

Definition 53 (LWE oracle). Let q, n,m ∈ N, and let χs, χe be distributions over Zq. We
first draw s ∈ Zn

q with coordinates drawn independently from each other according to the
distribution χs and then draw m LWE samples (ai, bi) ∈ Zn

q × Zq where the ai’s are drawn
uniformly at random in Zn

q and bi = ⟨ai, s⟩ + ei where the ei’s are drawn independently
according to the distribution χe. We let A ∈ Zm×n

q be the matrix where the i-th row is ai.

The pair (A,b) is the output of the oracle and satisfies b
def
= As+ e.

We then define the Search-LWE problem as follows:

Problem 1 (Search-LWE). Given a sample (A,b) drawn from an LWE (q, n,m, χs, χe)-
oracle, the goal is to recover the secret vector s.
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In the literature, the LWE oracle is sometimes defined by replacing the matrix A ∈ Zm×n
q

by a vector a ∈ Zn
q . Then the LWE problems are stated for an arbitrary number of calls to

the oracle. If the LWE oracle is called m times, then the situation is actually the same as
above.

9.2.3 The centered binomial distribution

In the LWE oracle, the distributions χs and χe depend on the context. Historically, the
secret vector s was distributed uniformly in Zn

q and the noise vector e was short. It is
quite common today to consider the case where s is also short; we are then talking about
the Small-LWE problem. In recent cryptosystems, particularly those involved in the NIST
Post-Quantum Standardization Process, the distributions for χs and χe are centered binomial
distributions. Note that in Kyber, the distribution for the secret vector and the error vector
is the same.

Definition 54 (Centered Binomial Distribution). The centered binomial distribution Bα of

parameter α ∈
r
0, q−1

2

z
is defined as Bα ∼

∑α
i=1(Xi − Yi) where the Xi’s and Yi’s are i.i.d.

as uniform over {0, 1}. In particular, for all i ∈ J−α, αK, we have P (Bα = i) = 2−2α
(
2α
α+i

)
.

Note that Bα has mean 0 and standard deviation σ
def
=
√

α
2 .

9.2.4 Further lattice background

Recall that we can construct a lattice from a linear code through Construction A:

Definition 55 (Construction A). Let C be an [n, k]q-code. The lattice Λ obtained by Con-
struction A applied to C is given by

Λ(C) def
= {x ∈ Rn : x ≡ c mod q, c ∈ C} . (9.29)

Note that if C is defined by a systematic generator matrix G
def
=

[
Ik
A

]
∈ Zn×k

q , then the

lattice Λ(C) that is obtained through Construction A is also the lattice Λ(B) generated by

B
def
=

[
Ik 0

A qIn−k

]
. (9.30)

Clearly finding the closest point in Euclidean distance to some y ∈ Zn
q in C also amounts

to find the closest lattice point in Λ(C) of y. The algorithm for performing this task when
y belongs to Rn is known as a mean-squared-error (MSE) quantizer for Λ(C). To analyze its
performance, first notice that the fundamental Voronöı region V of a lattice Λ(C) associated
to code C of dimension k over Zn

q has volume V (V )
def
= V (Λ(C)) = qn−k [CS88]. The average

decoding distance ω provided by the mean-square quantizer for Λ can be assessed by the

normalized second moment G
def
= G(Λ(C)), which is defined as

G
def
=

1

n · V (V )
2
n

∫

V

|v|2
V (V )

dv. (9.31)

It is known that

G ⩾
1

2πe
(9.32)
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and is achieved asymptotically for lattices generated by Construction A from q-ary random
codes when q gets big [ZF96]. The case where the equality is achieved in Equation (9.32)
really corresponds to the case when the equality

|C| · V (Ballnω) = qn (9.33)

is met, i.e. when the average decoding distance is

ω
def
=

√∫

V

|v|2
V (V )

dv =

√
n

2πe
· q1− k

n + o() 1. (9.34)

It corresponds therefore to the lattice analogue of the Gilbert-Varshamov distance.

9.2.5 Short vector sampler

Dual attacks heavily depend on lattice reduction algorithms, such as BKZ, to find short
vectors in a lattice or its dual. Our improvements in this chapter do not address these
algorithms. Instead, we will use Algorithm 30 to obtain short vectors and refer the reader to
[GJ21, MAT22] for implementation details.

Algorithm 30 Short Vectors Sampling Procedure [GJ21]

Input: A basis B =
[
b0 . . . bd−1

]
for a lattice and 2 ⩽ βbkz, βsieve ∈ Z ⩽ d.

Output: A list of Nsieve(βsieve)
def
=
(√

4
3

)βsieve

vectors from the lattice.

1: Randomize the basis B.
2: Run BKZ-βbkz to obtain a reduced basis b′

0, . . . ,b
′
d−1.

3: Run a sieve in dimension βsieve on the sublattice spanned by b′
0, . . . ,b

′
βsieve−1 to obtain a

list L of Nsieve(βsieve) vectors.
4: return L

The parameter βbkz controls the block size in the BKZ algorithm, with an exponential
cost in βbkz. The sieving algorithm outputs Nsieve(βsieve) short vectors in the lattice and
its complexity also scales exponentially with βsieve. The magnitude Nsieve(βsieve) also grows
exponentially with βsieve but slower than the cost of sieving. We will write TBKZ(d, βbkz)
for the cost of running BKZ-βbkz in dimension d and Tsieve(βsieve) for the cost of sieving
in dimension βsieve. One possible instantiation of the lattice sieve algorithm is [BDGL16]
which has a cost of 20.292βsieve+o(βsieve). Thus, according to the best known algorithms we have
TBKZ(d, βbkz) ∈ poly (d) · 2Θ(βbkz) and Tsieve(βsieve) ∈ 2Θ(βsieve). More specifically, we take these
complexities from [MAT22, Lemma 4.1, Assumption 7.3].

Lemma 44 (Short Vectors Sampling Complexity). Let B be a basis of a d-dimensional lattice.
Then, the running time Tsample of Algorithm 30 to output Nsieve(βsieve) short vectors is

Tsample (d, βbkz, βsieve) = TBKZ(d, βbkz) + Tsieve(βsieve) (9.35)

where

▷ TBKZ(d, βbkz) = C2
prog · (d− βbkz + 1) · TNNS(βbkzeff),

▷ Tsieve(βsieve) = Cprog · TNNS (βsieve),

232



9. Assessing the impact of a variant of MATZOV’s dual attack

▷ Nsieve(β) =
(√

4
3

)β
is the expected number of sieve results,

▷ TNNS (β) is the time complexity for finding all close pairs in dimension β (see [AGPS20a]
with improvement of MATZOV [MAT22, Section 6]),

▷ Cprog = 1/
(
1− 2−0.292

)
is the number of close pairs search to run,

▷ and βeff is the optimal sieve dimension to use for solving the Shortest Vector Problem
(SVP) for lattices in dimension β.

Note that in [Duc18], it is estimated that βeff = β − β log(4/3)
log(β/(2πe)) .

Lengths of the short vectors produced Assuming that the Gaussian Heuristic (GH) and
the Geometric Series Assumption3 (GSA) [Sch03] hold for a d-dimensional lattice, applying
BKZ-β to it produces vectors x of average length [Che13]:

|x| ≈ δ(β)d · V (Λ) 1
d , (9.36)

where δ(β) =
(

β
2πe (πβ)

1
β

) 1
2(β−1)

is the root-Hermite factor4. With these assumptions, the

expected length of the returned short vectors is given by:

Lemma 45 (Length of the sampled short vectors [MAT22, Lemma 4.2]). Let Λ be a d-
dimensional lattice. Then, Algorithm 30 outputs at least N vectors of expected length ℓ given
by

ℓ
def
= V (Λ)1/d ·

√
4

3
· δ(βsieve)βsieve−1 · δ(βbkz)d−βsieve . (9.37)

In our attack, we select βbkz and βsieve such that TBKZ(d, βbkz) = Tsieve(βsieve). Under the
same GH and GSA assumptions, we derive the following lemma:

Lemma 46. The short vectors produced by Algorithm 30 are in a sublattice Λ′ of dimension
βsieve and expected volume

V
(
Λ′) =

(
V (Λ) 1

d · δ(βbkz)d−βsieve

)βsieve

. (9.38)

9.2.6 Fast Fourier Transform

Dual lattice attacks widely use discrete Fourier transforms:

Definition 56 (Discrete Fourier Transform). The discrete Fourier transform f̂ of a function
f : Zn

q −→ C is defined as

f̂ (x) =
∑

a∈Zn
q

f(a)e
−2iπ

q ⟨x,a⟩
. (9.39)

3The GSA may lead us to underestimate the final complexity of a few bits (see [DP23b, Appendix A.3]).
4Experiments in [AD221] show that these assumptions hold for d > β and β → ∞ and in particular, it hold

with good accuracy for β > 50.
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The effectiveness of our dual attacks is heavily dependent on the speed at which we can
compute discrete Fourier transforms. In [MAT22, Ass. 7.4], it is estimated that a Fast
Fourier Transform (FFT) over Zn

q requires n · qn+1 multiplications. Note that this is clearly
suboptimal for large prime q’s: while this is not a problem in [MAT22] as q is reduced thanks
to modulus switching, here, we drop modulus switching resulting in q being big and imposed
by the original LWE instance (i.e. q = 3329 for Kyber). This motivates us to give the
following finer estimation for the cost of an FFT over Zn

3329.

Proposition 59 (Complexity of the FFT). Let q = 3329. There exists an FFT over Zq with
complexity given by:

N
(add)
FFT = 240500 and N

(mul)
FFT = 115928, (9.40)

the number of additions and multiplications, respectively.

By using the algorithm in [DM90, §2.3.2] that reduces the calculation of an FFT over Zn
q

to FFT’s over Zq, we deduce that the total cost to perform a discrete Fourier transform over
Zn
q is

n qn−1 N
(add)
FFT and n qn−1 N

(mul)
FFT (9.41)

additions and multiplications, respectively. Finally, by supposing as in [MAT22, Ass. 7.4]
that the cost of an addition and a multiplication are

Cadd = 160 and Cmul = 1024, (9.42)

respectively, the total cost of an FFT over Zn
q is

CFFT = Cadd n q
n−1 N

(add)
FFT + Cmul n q

n−1 N
(mul)
FFT . (9.43)

We obtained the number of additions and multiplications required for an FFT over Z3329,

namely N
(add)
FFT and N

(mul)
FFT , by slightly modifying the FFTW software. This software basi-

cally allows one to enumerate a large number of FFT’s and we simply selected the one that
minimized the cost CFFT

5.

9.3 Our algorithm

In this section, we present our algorithm for solving the search LWE problem. Unlike MAT-
ZOV, we do not use modulus switching to reduce the modulus size. As noted in the introduc-
tion, we expect that a good lossy source code/quantizer results in a smaller additional noise
term ⟨efft, sfft⟩ compared to modulus switching. However, modulus switching may still offer
benefits: it has certain advantages, such as improved FFT efficiency when the modulus is a
power of two, which is not the case in the starting LWE problem for Kyber. Additionally,
modulus switching provides more flexibility in choosing the parameter kfft. Although a hybrid
approach combining both techniques is possible, we do not pursue it in this work due to the
complexity it would add to the analysis.

5We give more details on how this result was obtained in https://github.com/kevin-carrier/

CodedDualAttack/tree/main/claimFFT
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9. Assessing the impact of a variant of MATZOV’s dual attack

9.3.1 Overview

Our algorithm begins by partitioning the set of coordinates I
def
= J1, nK of the secret s into

Ienu, Ifft and Ilat, with sizes nenu, nfft and nlat, respectively. The three parts of the vector s
are denoted as senu, sfft and slat respectively. Similarly, we divide the columns of A to obtain
Aenu, Afft and Alat. As described in the introduction, our algorithm basically tries to guess a
value s̃enu for senu by computing an associated score for s̃enu namely the maximum value of the
score function, max

z∈Zkfft
q
Fs̃enu(z) and making a decision on this value. Apart from the lossy

source code approach described above, we depart from the MATZOV algorithm in the two
following ways: firstly, we will make the bet that senu = 0, that is, we only consider s̃enu = 0
whereas MATZOV enumerates and tests several values s̃enu taken by decreasing likelihood.
Secondly, in our algorithm, we will select Ilat once and for all (instead of changing it at each
iteration), and then iterate R times with different choices for Ienu and Ifft on the remaining
positions, this allows us to reuse the computed dual vectors for each iteration. The skeleton
of the whole algorithm is given in Algorithm 31.

Algorithm 31 The code based dual attack to solve LWE

Input: a sample (A,b) ∈ Zm×n
q × Zm

q produced by an LWE (q, n,m,Bα,Bα) oracle.
Parameters: some positive integers R, T , βbkz, βsieve, nenu, nfft, kfft, nlat, dlsc and an

[nfft, kfft]q linear code with generator matrix G.
Output: the secret vector s.

1: choose Ilat ⊆ J1, nK such that |Ilat| = nlat;
2: S ← Set of short lattice vectors(A, Ilat);
3: while i = 1 · · ·R do
4: choose a partition Ienu ∪ Ifft of J1, nK \ Ilat with |Ienu| = nenu, |Ifft| = nfft;
5: Aenu,Afft ← select the columns of A indexed by Ienu and Ifft respectively;
6: L ← LWE Samples(S ,Afft,G);
7: V← Solve LWE with FFT(L );
8: if V ⩾ T then
9: senu ← 0

10: (sfft, slat)← sub LWE solver(
[
Afft Alat

]
, b)

11: return (senu, sfft, slat, Ienu, Ifft, Ilat)

9.3.1.1 Finding short vectors

We now give details on the procedures Set of short lattice vectors, LWE Samples,
Solve LWE with FFT and sub LWE solver. This function outputs a set S of pairs of
short vectors (x,y) obtained by performing the short vectors sampler Algorithm 30 with the
appropriate choice of parameters on the lattice Λ(B) where the lattice basisB ∈ R(m+nlat)×(m+nlat)

is given by Construction A:

B
def
=




Im 0

Alat
⊺ qInlat


 . (9.44)

This gives pairs (x,y) ∈ Zm × Znlat for which both x and y are short and satisfy y = A⊺
latx

mod q. For the rest of this chapter we denote by N the expected size of S . From Lemma
44, we have
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Notation 9.

N
def
= Nsieve (βsieve)

def
=

(√
4

3

)βsieve

. (9.45)

9.3.1.2 Reducing the dimension with a linear code

We give more details on the LWE Samples procedure here. The idea behind the dimension
reduction technique using a linear code that we use here originates from Coded-BKW [GJS15].
Each pair (x,y) of short vectors in S yields one LWE sample by decoding A⊺

fftx in the code

Clsc generated by G. This yields an output ulsc ∈ Zkfft
q such that elsc

def
= A⊺

fftx −Gulsc is of
small norm, say close to some dlsc.The new LWE sample is given by the pair (ulsc, ⟨x,b⟩). It
is readily seen that, when senu = 0 we have

⟨x,b⟩ = ⟨ulsc,G
⊺sfft⟩+ ⟨x, e⟩+ ⟨y, slat⟩+ ⟨elsc, sfft⟩ (9.46)

which corresponds to an LWE sample with secret G⊺sfft and noise e′ = ⟨x, e⟩ + ⟨y, slat⟩ +
⟨elsc, sfft⟩. All these samples (ulsc, ⟨x,b⟩) are then put in a list L which is the output of
LWE Samples.

9.3.1.3 Solving the LWE problem with a fast Fourier transform

Here we give more details on the Solve LWE with FFT procedure. This procedure outputs
a real number V which indicates to us how noisy the aforementioned LWE samples are. This
is done by searching exhaustively for the solution G⊺sfft by computing the score function for
all z ∈ Zkfft

q :

F
(lsc)
0 (z)

def
=

∑

(ulsc,b)∈L

cos
(
2π
q (b− ⟨ulsc, z⟩)

)
, (9.47)

and returning its maximum value, V = max
z∈Zkfft

q
F

(lsc)
0 (z). If senu = 0 we expect that this

maximum value is achieved for z = G⊺sfft. The score function is efficiently computed with

an FFT as follows. First we compute a function f
(lsc)
0 defined for a ∈ Zkfft

q as

f
(lsc)
0 (a)

def
=

∑

(a,b) : (a,b)∈L

e
2iπ
q

b
, (9.48)

then we compute the FFT of f
(lsc)
0 and take its real part. It is readily seen that

F
(lsc)
0 = Re

(
f̂
(lsc)
0

)
. (9.49)

9.3.1.4 Recovering the rest of the secret

Here we give more details about the sub LWE solver procedure. At this point, we expect
that, under the condition that our parameters are well-chosen, if V ⩾ T (here T will be

chosen around the expected value of F
(lsc)
0 (G⊺sfft) when senu = 0) then with overwhelming

probability, senu = 0. In other words, we recovered nenu positions of the secret from the
original LWE problem (A,b) of dimension m× n. Note that when senu = 0 we can write

b = As+ e =
[
Afft Alat

](sfft
slat

)
+ e. (9.50)
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As such, if indeed senu = 0, we can recover sfft and slat by solving the new LWE problem
given by

([
Afft Alat

]
, b
)
, which has strictly smaller dimension m× (n− nenu). We do not

specify a particular algorithm for the sub LWE solver routine, since it will be called at
most once, and solving an LWE instance with smaller dimension and with error distribution
Bα has complexity negligible compared to the other computations in Algorithm 31.

9.3.2 Correctness of the algorithm

The following lemma provides the conditions on the parameters for Algorithm 31 to succeed.

Lemma 47 (Correctness). Suppose (A,b) is sampled from an LWE (q, n,m,Bα,Bα) oracle,
and sub LWE Solver returns sfft and slat with probability 1 − µ when the bet senu = 0 is

valid and the secret meets the threshold, namely F
(lsc)
0 (G⊺sfft) ⩾ T . The probability that our

algorithm succeeds in recovering the secret s, is lower bounded by

Psuccess
def
= η · Pgood · (1− µ)− ε (9.51)

where
ε

def
= R · qkfft · Pwrong, (9.52)

η
def
=


1−

nenu+nfft∑

t=0

(
1−

(
t

nenu

)
(
nenu+nfft

nenu

)
)R(

nenu + nfft
t

)
pt0(1− p0)nenu+nfft−t


 , (9.53)

Pgood
def
= P

(
F

(lsc)
0 (G⊺sfft) ⩾ T

∣∣∣senu = 0
)
, (9.54)

Pwrong
def
= P

(
F

(lsc)
0 (z) ⩾ T

∣∣∣senu ̸= 0
)
, (9.55)

p0
def
= P (Bα = 0) = 2−2α

(
2α

α

)
(9.56)

and where z is taken uniformly at random in Zkfft
q . We will use Approximations 5 and 6 to

estimate Pgood and Pwrong, respectively.

Proof. For i ∈ J1, RK, let us denote the following events for each iteration i:

• Ai: “senu = 0”;

• Bi: “F
(lsc)
0 (G⊺sfft) ⩾ T”;

• Ci: “sub-LWE finds the secret”;

• Di: “∃z ∈ Zkfft
q , F

(lsc)
0 (z) ⩾ T”;

Using the union bound on the probability that the algorithm fails and taking the complement
of this event yields that the probability that our algorithm succeeds is lower bounded by

P

((⋃

i

(Ai ∩Bi ∩ Ci)

)
∩
(⋂

i

(
Ai ∪Di

)
))

⩾ P

(⋃

i

(Ai ∩Bi ∩ Ci)

)
− P

(⋃

i

(
Ai ∩Di

)
)
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Next, applying the union bound again and considering that we run R iterations, we can upper
bound P

(⋃
i

(
Ai ∩Di

))
by RqkfftPwrong, which gives the −ε term in the inequality stated in

the lemma. On the other hand, it is straightforward to lower bound the first term:

P

(⋃

i

(Ai ∩Bi ∩ Ci)

)
= P

(⋃

i

(Ai ∩Bi ∩ Ci)
∣∣ ⋃

i

Ai

)
· P
(⋃

i

Ai

)

⩾ P (Bi0 ∩ Ci0 | Ai0) · P
(⋃

i

Ai

)

= P (Ci0 | Ai0 , Bi0) · P (Bi0 | Ai0) · P
(⋃

i

Ai

)

= (1− µ) · Pgood · P
(⋃

i

Ai

)

Let n0 denote the number of zeros in sJ1,nK\Ilat . Then, we have

P

(⋃

i

Ai

)
= 1− P

(⋂

i

Ai

)

= 1−
nenu+nfft∑

t=0

P

(⋂

i

Ai

∣∣ n0 = t

)
· P (n0 = t)

= 1−
nenu+nfft∑

t=0

(
1−

(
t

nenu

)
(
nenu+nfft

nenu

)
)R

· P (n0 = t)

Clearly, n0 follows a binomial distribution with parameter nenu + nfft and p0. This concludes
the proof.

Note that Lemma 47 does not impose any constraints on N and T . However, we must
choose them carefully. First, if R · qkfft · Pwrong ⩾ 1 or if Pgood is too small, then the lower
bound we obtain for the probability of success of our dual attack is 0, which means we cannot
actually guarantee a success. This is why, in Section 9.5, we select N and T that ensure a
high probability of success. In particular, we set η ⩾ 0.62 and ε close to 0 (see Appendix 9.4),
ensuring a success probability of at least 0.3(1 − µ). Furthermore, it is worth noting that
the condition “R · qkfft · Pwrong is much smaller than 1” resolves the indistinguishability issue
raised in [DP23b].

9.3.3 Choice for the auxiliary code used

In Algorithm 31, one could ask: which code should we use for Clsc ? In terms of the decoding
distance alone, the answer would be, just use a random code of dimension kfft in Znfft

q . In

this case, we would obtain the decoding distance d ≈ q
1− kfft

nfft

√
nfft
2πe (see Equation (9.34))

attaining the bound (9.32) or (9.33). However, the decoding algorithm we could use in this
case would be too complex for our purpose. We could instead use a product code structure
as in [BDGL16]. Contrarily to what happens in the latter case, where spherical codes can be
used, we are in a situation where more structured codes could do the job better. A natural
answer is given here by polar codes.

238



9. Assessing the impact of a variant of MATZOV’s dual attack

The generator matrix of such a code in length n which is a power of 2 and an arbitrary
code dimension k is obtained as follows. We define a generator matrix G for our code as

G
def
= K1 ⊗ · · · ⊗Klog2(n)

· F where ⊗ stands for the Kronecker product, Ki
def
=

[
1 1
αi 0

]
and

αi’s are some invertible elements chosen uniformly at random in Z∗
q . The matrix F ∈ Zn×k

q

is an expansion matrix such that for all m ∈ Zk
q , Fm is exactly m on k positions and 0 on

the others (that are the frozen positions). Since the code length we need is not necessarily a
power of 2, we adjust it by puncturing the code (i.e. we remove as many rows of the generator
matrix as needed).

Furthermore, the Successive Cancellation (SC) decoder which is classically used to decode
polar codes in the error correction scenario can be turned with a simple modification into an
algorithm for finding a close codeword (but not necessarily the closest one) [KU10]. This is
precisely what is needed in our context. It needs a noise model to instantiate it, and this can
be done for our Euclidean metric by using the Gaussian noise model. To get even closer to
the optimal decoding distance, we have improved the decoding process: firstly we turn the SC
algorithm into a probabilistic decoder, then we call it several times to get a list of codeword
candidates and choose the closest one from this list (see Appendix 9.6.1 to get more details
about our list decoder). This procedure induces a new small constant factor L in the whole
complexity which is the size of the decoding list; but in return this additional cost allows us
to achieve a better decoding distance. The complexity for decoding is given by:

Lemma 48 (Decoding polar codes). List decoding an [nfft, kfft]q polar code by using L prob-
abilistic SC decoders can be done with time complexity of order

Tdec (q, nfft, kfft) = 3 · L ·
(
Cmul ·N (mul)

FFT (q) + Cadd ·N (add)
FFT (q)

)
· n′fft log2(n′fft) (9.57)

where n′fft is the smallest power of 2 greater than nfft and N
(mul)
FFT (q) is the number of multi-

plications we need to achieve a discrete Fourier transform over Zq.

The proof of this lemma directly follows from Lemma 49.

By using similar arguments as in [KU10], it can be proven that for nfft tending to infinity
and constant kfft

nfft
, the average distance achieved by our decoder is

dlsc =
√

nfft
2πe · q

1− kfft
nfft · (1 + o() 1) (9.58)

This result is essentially due to the polarization phenomenon (see Appendix 9.6.1). How-
ever, Equation (9.58) is not precise enough to accurately estimate the full complexity of our
dual attack due to the o(1) term. For this reason, we provide a C implementation6 and
present experimental results demonstrating that polar codes are perfectly suited to our case.
The experiments we conducted use the exact codes required for our dual attacks, and our
optimization suggests choosing L = 1. To justify the use of polar codes in this context, we
verified that the total complexity of our dual attack closely matches the ideal scenario, where

decoding at the distance dlsc
def
=
√

nfft
2πe · q

1− kfft
nfft would incur the same cost as using polar codes.

6https://github.com/kevin-carrier/CodedDualAttack/tree/main/PolarCodeOverZq
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9.4. Analysis

9.4 Analysis

9.4.1 Complexity

A general formula for the complexity of our algorithm using polar codes for Clsc is given by
the following theorem:

Theorem 10 (Complexity of Algorithm 31). Using the same notations as in the correctness
Lemma 47 and by supposing that the cost of one call to Sub LWE Solver is negligible, the
average time complexity of Algorithm 31 is upper bounded by

Tsample +R · (N · Tdec + TFFT) (9.59)

where

▷ Tsample
def
= Tsample(m + nlat, βbkz, βsieve) is the cost to produce N = Nsieve(βsieve) short

vectors in Λ(B). This cost is given by Lemma 44;

▷ Tdec
def
= Tdec(q, nfft, kfft) is the cost for decoding a random vector in Znfft

q in Clsc generated
by G. This cost is given by Lemma 48;

▷ TFFT is the cost of an FFT over Zkfft
q and is given by Proposition 59;

9.4.2 Modelling the distribution of the score function

In this subsection, we provide an accurate estimation of the probabilities Pgood and Pwrong

that appear in Theorem 10. First, let us recall the expression of the score function:

F
(lsc)
s̃enu

(G⊺s̃fft)
def
=

∑

(x,y)∈S

cos
(
2π
q (⟨x,b−Aenus̃enu⟩ − ⟨ulsc,G

⊺s̃fft⟩)
)

(9.60)

=
∑

(x,y)∈S

cos
(
2π
q (⟨x,b−Aenus̃enu⟩ − ⟨clsc, s̃fft⟩)

)
(9.61)

where S is a set of N short vectors drawn from {(x,y) ∈ Λ(B) : |(x,y)| ⩽ dlat}. Here,

clsc
def
= Gulsc is a codeword in Clsc ⊆ Znfft

q , obtained by decoding A⊺
fftx using our polar code

decoder. It is important to note that, according to Lemma 46, the short lattice vectors in S
generated by Algorithm 30 are not uniformly distributed within Λ(B) ∩ Ballm+nlat

dlat
; instead,

they belong to a βsieve-dimensional sublattice Λ (B′) ⊆ Λ(B), where B′ ∈ R(m+nlat)×βsieve .
More precisely, we make the following assumption regarding the distribution of vectors in S :

Assumption 4. We assume that the set S consists of N vectors uniformly sampled from

{
w ∈ Λ(B′) : |w| ⩽ dlat

}
,

where Λ(B′) is a βsieve-dimensional sublattice of Λ(B) with basis B′ ∈ R(m+nlat)×βsieve, and

volume as stated in Lemma 46. The radius dlat
def
= ℓ(βsieve+1)

βsieve
corresponds to that of a βsieve-

dimensional Euclidean ball, within which the average vector length ℓ is given in Lemma 45.
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9. Assessing the impact of a variant of MATZOV’s dual attack

Additionally, we assume that the probability distribution of the output of our polar code
decoder has radial symmetry. This means that the probability depends only on the distance
between the returned codeword and the word to be decoded, not on the specific direction.
Through experimentation, we observed that this distance closely follows a normal distribution.
Based on these observations, we make the following assumption:

Assumption 5. Let u be any vector from Znfft
q , and let Dec(u) represent the random vari-

able corresponding to the output of our polar code decoding algorithm. The distribution of
|u−Dec(u)| does not depend on u and we assume that it can be smoothed and approximated
by the normal distribution N (µlsc, σ

2
lsc), where µlsc is the mean and σlsc is the standard devia-

tion, both determined through simulations. We also assume that the conditional distribution
of u−Dec(u) given that |u−Dec(u)| = dlsc is uniform over (Λ(Clsc) + u) ∩ Spherenfft

dlsc
.

9.4.2.1 First-level approximation

The score function F
(lsc)
s̃enu

(G⊺s̃fft), as recalled in Equation (9.61), is a random variable influ-
enced by multiple sources of randomness:

(i) the randomness in the short vector sampling Algorithm 30 that generates S ,

(ii) the inherent randomness in the polar code decoder Dec,

(iii) the randomness in the LWE instance, particularly in the choice of the matrix A,

(iv) the randomness of the guess s̃enu, which primarily arises from the selection of Ienu,

(v) the randomness of the guess s̃fft.

We denote by ES ,Dec (·) the conditional expectation over the randomness sources (i) and (ii).
Thus, a first-level approximation of the score function is:

Approximation 2 (First-Level Approximation). The score function F
(lsc)
s̃enu

(G⊺s̃fft) can be
approximated by its conditional expectation

ES ,Dec

(
F

(lsc)
s̃enu

(G⊺s̃fft)
)

(9.62)

where the expectation is taken over the randomness of the polar code decoder and the short
vector sampler.

We make the following approximation that we justify heuristically next.

Approximation 3 (Dual approximation). The conditional expectation in Approximation 2
can be expressed as

ES ,Dec

(
F

(lsc)
s̃enu

(G⊺s̃fft)
)
=

∑

(w∨
lat,w

∨
lsc)

∈Λ(Btmp
global)

∨+
(B′⊺rlat,B

⊺
lsc

rlsc)
q

f̂lat
(
w∨

lat

)
· f̂lsc

(
w∨

lsc

)
, (9.63)

where

flat (wlat)
def
= P

(
B′wlat ∈ S

)
, flsc (wlsc)

def
= P (u−Dec (u) = Blscwlsc) , (9.64)
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(rlat, rlsc)
def
= r

def
= (e+Aenu(senu − s̃enu) +Afft(sfft − s̃fft), slat, s̃fft) , (9.65)

and

Btmp
global

def
=

[
Iβsieve

0
A⊺

fftB
′
[m] Infft

]
. (9.66)

Here, rlat corresponds to the first m + nlat coordinates of r, while rlsc corresponds to its
last nfft coordinates. Additionally, under Assumption 5, we have that the random variable
u−Dec(u) is independent of u and follows the distribution induced by the polar code decoder.

Heuristic justification. For any vector in Λ(B′), let x and y denote its first m coordinates and
its next nlat coordinates, respectively. Taking the conditional expectation over the randomness
of both the polar code decoder and the short vector sampler, we obtain:

ES ,Dec

(
F

(lsc)
s̃enu

(G⊺s̃fft)
)

=

∑

(x,y)∈Λ(B′)
clsc∈Λ(Clsc)

P
(
(x,y) ∈ S and Dec

(
A⊺

fftx
)
= clsc

)

· cos
(
2π
q (⟨x,b−Aenus̃enu⟩ − ⟨clsc, s̃fft⟩)

)

=

∑

(x,y)∈Λ(B′)
wlsc∈Λ(Clsc)+A⊺

fftx

P
(
(x,y) ∈ S and A⊺

fftx−Dec
(
A⊺

fftx
)
= wlsc

)

· cos
(
2π
q

(
⟨x,b−Aenus̃enu⟩ −

〈
A⊺

fftx−wlsc, s̃fft
〉))

=

∑

(x,y)∈Λ(B′)
wlsc∈Λ(Clsc)+A⊺

fftx

P ((x,y) ∈ S ) · P
(
A⊺

fftx−Dec
(
A⊺

fftx
)
= wlsc

)

· cos
(
2π
q

(
⟨x,b−Aenus̃enu⟩ −

〈
A⊺

fftx−wlsc, s̃fft
〉))

where the last equality holds because of the independence of the decoding noise u − Dec(u)
from u. Next, we simplify the inner expression inside the cosine function:

⟨x,b−Aenus̃enu⟩ −
〈
A⊺

fftx−wlsc, s̃fft
〉

= ⟨x, e+Aenu(senu − s̃enu) +Alatslat +Afftsfft⟩ −
〈
A⊺

fftx−wlsc, s̃fft
〉

= ⟨x, e+Aenu(senu − s̃enu) +Afft(sfft − s̃fft)⟩+
〈
A⊺

latx, slat
〉
+ ⟨wlsc, s̃fft⟩

= ⟨(x,y,wlsc) , r⟩ mod q

where r is as defined in Equation (9.65). So, we obtain

ES ,Dec

(
F

(lsc)
s̃enu

(G⊺s̃fft)
)
=

∑

(x,y)∈Λ(B′)
wlsc∈Λ(Clsc)+A⊺

fftx

P ((x,y) ∈ S ) ·P
(
A⊺

fftx−Dec
(
A⊺

fftx
)
= wlsc

)

· cos
(
2π
〈
(x,y,wlsc) ,

r
q

〉) .

We observe that if (x,y) ∈ Λ(B′) and wlsc ∈ Λ(Clsc) +A⊺
fftx, then it follows that (−x,−y) ∈

Λ(B′) and −wlsc ∈ Λ(Clsc) − A⊺
fftx. Furthermore, the probabilities involved in the formula

are invariant under negation. This allows us to express the cosine function in its exponential
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9. Assessing the impact of a variant of MATZOV’s dual attack

form, which yields

ES ,Dec

(
F

(lsc)
s̃enu

(G⊺s̃fft)
)

=
∑

(x,y)∈Λ(B′)
wlsc∈Λ(Clsc)+A⊺

fftx

P ((x,y) ∈ S ) · P
(
A⊺

fftx−Dec
(
A⊺

fftx
)
= wlsc

)
· e2iπ

〈
(x,y,wlsc),

r
q

〉

=
∑

(wlat,wlsc)∈Λ(Btmp
global)

flat (wlat) · flsc (wlsc) · e2iπ
〈
(B′wlat,Blscwlsc),

r
q

〉
.

Note that the function flsc is defined in terms of a vector u, which in this case depends on
wlat. However, the error vector produced by our polar code decoder is independent of the
vector being decoded; that means the distribution flsc does not depend on u. Finally, we
heuristically suppose that we can apply Poisson summation formula to conclude.

9.4.2.2 Second-level approximation

By estimating the Fourier transforms f̂lat and f̂lsc from Approximation 3, we derive a new
approximation of the score function:

Approximation 4 (Second-Level Approximation). Based on Approximation 2, Assumptions
4 and 5, and assuming the Gaussian Heuristic holds, we have

F
(lsc)
s̃enu

(G⊺s̃fft) ≈ N ·
∑

i⩾0
j⩾0

Ni,j ·
∫ ∞

0
ψlsc(dlsc) · Φdlsc(i, j)ddlsc (9.67)

where
Φdlsc(i, j)

def
= Υβsieve

2

(
2π
q dlati

)
·Υnfft

2 −1

(
2π
q dlscj

)
, (9.68)

Υn(x)
def
=

Γ (n+ 1) Jn(x)

(x/2)n
=

+∞∑

ℓ=0

(−1)ℓ(x/2)2ℓ
ℓ!
∏ℓ

s=1(n+ s)
, (9.69)

Ni,j
def
=

∣∣∣
{
(wlat,wlsc) ∈ qΛ (Bglobal)

∨ +rproj ⊆ span (B′)× Rnfft

: |wlat| = i and |wlsc| = j
}∣∣∣,

(9.70)

with rproj, the orthogonal projection on span(Bglobal) = span(B′)× Rnfft of

r
def
= (e+Aenu(senu − s̃enu) +Afft(sfft − s̃fft), slat, s̃fft) , (9.71)

and

Bglobal
def
=

B′ 0

A⊺
fft ·B′

[m] Blsc

βsieve nfft

m+ nlat

nfft

Here:
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• B′ ∈ R(m+nlat)×βsieve is a basis of the sublattice where the sampled short vectors lie,

• B′
[m] consists of the first m rows of B′,

• and Blsc is a basis of the lattice Λ(Clsc).
To justify the above approximation, we first show that under Assumptions 4 and 5, and

assuming the Gaussian Heuristic holds, the following two approximations hold:

f̂lat
(
w∨

lat

)
≈ N ·Υβsieve

2

(
2πdlat

∣∣∣B′ (B′⊺B′)−1
w∨

lat

∣∣∣
)
, (9.72)

and

f̂lsc
(
w∨

lsc

)
≈
∫ ∞

0
ψlsc(dlsc) ·Υnfft

2 −1

(
2π
q dlsc

∣∣∣B−⊤
lsc w∨

lsc

∣∣∣
)
ddlsc. (9.73)

On the one hand, under Assumption 4 and the Gaussian Heuristic, we can smooth and
approximate flat by

flat (wlat) ≈ 1⩽dlat

(
B′wlat

)
·N · V(Λ(B′))

V
(
Ball

βsieve
dlat

) . (9.74)

Using the radial nature of both 1⩽dlat and 1̂⩽dlat , and the facts that |B′wlat| =
∣∣∣
√
B′⊺B′wlat

∣∣∣
and

∣∣∣
√
B′⊺B′−⊤

w∨
lat

∣∣∣ =
∣∣∣B′ (B′⊺B′)−1w∨

lat

∣∣∣, we have

f̂lat (w
∨
lat) ≈

N ·V(Λ(B′))

V
(
Ball

βsieve
dlat

)∫
Rβsieve

1⩽dlat

(
B′wlat

)
e−2iπ⟨wlat,w

∨
lat⟩dwlat

= N ·V(Λ(B′))

V
(
Ball

βsieve
dlat

)∫
Rβsieve

1⩽dlat

(√
B′⊺B′wlat

)
e−2iπ⟨wlat,w

∨
lat⟩dwlat

= N ·V(Λ(B′))

V
(
Ball

βsieve
dlat

)
·
√

det(B′⊺B′)
·
∫

Rβsieve

1⩽dlat (v) e
−2iπ

〈√
B′⊺B′−1

v,w∨
lat

〉
dv

= N

V
(
Ball

βsieve
dlat

) · 1̂⩽dlat

(√
B′⊺B′−⊤

w∨
lat

)

= N

V
(
Ball

βsieve
dlat

) · 1̂⩽dlat

(
B′ (B′⊺B′)−1w∨

lat

)

where the Fourier transform of the indicator function of a ball can be expressed in term of
the Bessel function:

1̂⩽dlat (w) =
(
dlat
|w|

)βsieve
2 · Jβsieve

2

(2πdlat |w|)

= V
(
Ballβsieve

dlat

)
·Υβsieve

2

(2πdlat |w|) .

On the other hand, based on Assumption 5, we state the following approximation for flsc:

flsc (wlsc)
def
= P (u−Dec (u) = Blscwlsc)

= P (|u−Dec (u)| = |Blscwlsc|) · P (u−Dec (u) = Blscwlsc | |u−Dec (u)| = |Blscwlsc|)

≈
(∫ √|Blscwlsc|2+1

|Blscwlsc|
ψlsc (dlsc) ddlsc

)
· V(Λ(Clsc))

V
(
Ball

nfft√
|Blscwlsc|2+1

)
−V
(
Ball

nfft
|Blscwlsc|

)
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where ψlsc is the probability density function of the normal distribution N
(
µlsc, σ

2
lsc

)
. In

the context of our dual attack on Kyber, the decoding distance |Blscwlsc| takes values in
the hundreds or even thousands, as shown in Appendix 9.6.3, Table 9.3. Consequently, the

difference
√
|Blscwlsc|2 + 1− |Blscwlsc| is small, allowing us to approximate flsc (wlsc) by

flsc (wlsc) ≈

(√
|Blscwlsc|2 + 1− |Blscwlsc|

)
· ψlsc (|Blscwlsc|) · V (Λ(Clsc))

(√
|Blscwlsc|2 + 1− |Blscwlsc|

)
· V
(
Spherenfft

|Blscwlsc|

)

= ψlsc (|Blscwlsc|) ·
V (Λ(Clsc))

V
(
Spherenfft

|Blscwlsc|

)

Note that we must have

∑

wlsc∈Znfft

P (u−Dec (u) = Blscwlsc) = 1.

Thus, the smoothed approximation of flsc should represent a probability density function, as
we can verify by the following7:

∫

Rnfft

ψlsc (|Blscwlsc|) · V(Λ(Clsc))

V
(
Sphere

nfft
|Blscwlsc|

)dwlsc =

∫

Rnfft

ψlsc (|w|) · V(Λ(Clsc))
V
(
Sphere

nfft
|w|

) · 1
det(Blsc)

dw

=

∫

Rnfft

ψlsc (|w)| · 1

V
(
Sphere

nfft
|w|)

)dw
=

∫ ∞

0
ψlsc (dlsc)

∫

Sphere
nfft
dlsc

1

V
(
Sphere

nfft
dlsc

)dσ(s)ddlsc
=

∫ ∞

0
ψlsc (dlsc) ddlsc

≈ 1

where dσ(s) represents the classical Lebesgue measure on the sphere Spherenfft
dlsc

. Finally, by
using [CE01, Prop.2.1], we have

f̂lsc (w
∨
lsc) ≈

∫

Rnfft

ψlsc (|Blscwlsc|) · V(Λ(Clsc))

V
(
Sphere

nfft
|Blscwlsc|

) · e−2iπ⟨w∨
lsc,wlsc⟩dwlsc

=

∫

Rnfft

ψlsc (|w|) · V(Λ(Clsc))
V
(
Sphere

nfft
|w|

) · e−2iπ⟨w∨
lsc,B

−1
lsc wlsc⟩ · 1

det(Blsc)
dw

=

∫

Rnfft

ψlsc (|w|) · 1

V
(
Sphere

nfft
|w|

) · e−2iπ⟨B−⊤
lsc w∨

lsc,wlsc⟩dw

=
2π

∣∣∣B−⊤
lsc w∨

lsc

∣∣∣
nfft
2 −1

∫ ∞

0
ψlsc(dlsc) · V(Λ(Clsc))

V
(
Sphere

nfft
dlsc

) · dlsc nfft
2 · Jnfft

2 −1

(
2πdlsc

∣∣∣B−⊤
lsc w∨

lsc

∣∣∣
)
ddlsc

=

∫ ∞

0
ψlsc(dlsc) ·Υnfft

2 −1

(
2πdlsc

∣∣∣B−⊤
lsc w∨

lsc

∣∣∣
)
ddlsc.

7We verified that
∫ 0

−∞ ψlsc(r)dr is negligible.
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Finally, by leveraging Approximation 2 and Approximation 3, together with Approxima-
tions (9.72) and (9.73) for f̂lat and f̂lsc, we can complete the justification for Approximation

4. First, we observe that for all (w∨
lat,w

∨
lsc) ∈ Λ(Btmp

global)
∨ +

(B′⊺rlat,B
⊺
lscrlsc)

q , we have

q
(
B′ (B′⊺B′)−1

w∨
lat,B

−⊤
lsc w∨

lsc

)
∈ qΛ(Bglobal)

∨ + rproj,

And so, combining all the terms and making the appropriate variable change, we obtain

F
(lsc)
s̃enu

(G⊺s̃fft) ≈ N ·
∫ ∞

0
ψlsc(dlsc) ·

∑

(w∨
lat,w

∨
lsc)

∈qΛ(Bglobal)
∨+rproj

Υβsieve
2

(
2π
q dlat

∣∣w∨
lat

∣∣
)
·Υnfft

2 −1

(
2π
q dlsc

∣∣w∨
lsc

∣∣
)
ddlsc.

We conclude by noting that the inner sum depends only on the lengths of w∨
lat and w∨

lsc, that
we denote i and j, respectively.

9.4.2.3 Third-level approximation

In Appendix 9.6.2, we provide an initial intuition for why the good guess can be distinguished
from the wrong ones, based on Approximation 4. However, here we present more precise
calculations.

Recall that Approximation 4 gives

F
(lsc)
s̃enu

(G⊺s̃fft) ≈ N ·
∫ ∞

0
ψlsc(dlsc) ·

∑

i,j

Ni,j · Φdlsc(i, j)ddlsc (9.75)

where Ni,j is a random variable representing the number of pairs (w∨
lat,w

∨
lsc) ∈ qΛ (Bglobal)

∨+
rproj ⊆ span (B′)× Rnfft such that |w∨

lat| = i and |w∨
lsc| = j.

Describing the distribution in Equation (9.75) is quite complex. To simplify this, we
propose the following model:

Model 8. We assume that F
(lsc)
s̃enu

(G⊺s̃fft) approximately follows the same distribution as
D + N (0, N/2), where N (0, N/2) denotes a normal distribution with mean 0 and standard
deviation

√
N/2, and

D def
= N ·

∫ ∞

0
ψlsc(dlsc) ·

(
max

i,j : Ni,j=1
(Φdlsc(i, j))

)
ddlsc. (9.76)

We recall that ψlsc refers to the probability density function of N (µlsc, σ
2
lsc).

Based on Approximation 4 and Model 8, we can make the following two approximations,
with probabilities calculated over the randomness of the guesses Ienu and s̃fft, as well as over
the randomness of the LWE instance:

Approximation 5 (Good Guess). If we make the good guess (s̃enu, s̃fft) = (senu, sfft) and if

we choose T around the expectation of F
(lsc)
senu (G⊺sfft), namely by defining

T

N
=

exp
(

−α(πµlsc/q)
2

1+2α(πσlsc/q)2

)

√
1 + 2α(πσlsc/q)2

·
∫ 1

0
βsieve · tβsieve−1 · e

−α

(
πdlatt
q

)2

dt, (9.77)

then
Pgood

def
= P

(
F

(lsc)
senu (G⊺sfft) ⩾ T

)
≈ 0.5 (9.78)
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Approximation 6 (Wrong Guess). If we make the wrong guess (s̃enu, s̃fft) ̸= (senu, sfft), then

Pwrong
def
= P

(
F

(lsc)
s̃enu

(G⊺s̃fft) ⩾ T
)

(9.79)

≈
∫ +∞

−∞

∫ +∞

0
min

(
1,

∫

E(T−t)
λ(x)µ(y)d(x, y)

)
· e

−t2

N − (dlsc−µlsc)
2

2σ2
lsc

πσlsc
√
2N

ddlsc dt(9.80)

where

E(T − t) def
=
{
(x, y) ∈ R2

+ : N · Φdlsc(x, y) ⩾ T − t
}
, (9.81)

λ(x)
def
=

2 · δ (βbkz)βsieve(m+nlat−βsieve) · π
βsieve
2 · xβsieve−1

q
βsieve· m

m+nlat · Γ
(
βsieve
2

) and µ(y)
def
=

2 · π
nfft
2 · ynfft−1

qkfft · Γ
(
nfft
2

) .

(9.82)

9.4.2.3.1 Justification of Approximation 5. The rationale behind Approximation 5
is that if we make the good guess (s̃enu, s̃fft) = (senu, sfft), then there exists an element

rproj
def
= (P(e, slat), sfft) ∈ qΛ (Bglobal)

∨ + rproj (9.83)

which has particularly small length. Specifically, the quantities |P(e,slat)|√
α
2

and |sfft|√
α
2

approxi-

mately follow a χ-distribution8 with degrees of freedom βsieve and nfft, respectively. Therefore,
we obtain

Eχβsieve
,χnfft

(
F

(lsc)
senu (G⊺sfft)

)
≈ Eχβsieve

,χnfft
(D)

≈ N · Edlsc

(
Eχβsieve

,χnfft

(
Φdlsc

(√
α
2χβsieve

,
√

α
2χnfft

)))

= N · Eχβsieve

(
Υβsieve

2

(
2π
q dlat

√
α
2χβsieve

))

·Eχnfft
,dlsc

(
Υnfft

2 −1

(
2π
q dlsc

√
α
2χnfft

))

where Edlsc (·) denotes the expectation with respect to the random variable dlsc, which follows
a normal distribution N (µlsc, σ

2
lsc).

Using Equation (9.69), each term in the above equation can be expressed in terms of the

8Strictly speaking, it is not an exact χ-distribution since the coordinates of rproj are not precisely normally
distributed.
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moments of the χ2-distribution:

Eχnfft
,dlsc

(
Υnfft

2 −1

(
2π
q dlsc

√
α
2χnfft

))
= Edlsc




+∞∑

ℓ=0

(
−α

(
πdlsc
q

)2)ℓ

ℓ!
· E

(
χ2ℓ
nfft

)

2ℓ
∏ℓ

s=1

(
nfft
2 − 1 + s

)




= Edlsc




+∞∑

ℓ=0

(
−α

(
πdlsc
q

)2)ℓ

ℓ!




= Edlsc


e

−α

(
πdlsc
q

)2



=
exp

(
−α(πµlsc/q)

2

1+2α(πσlsc/q)2

)
√

1+2α(πσlsc/q)2

and

Eχβsieve

(
Υβsieve

2

(
2π
q dlat

√
α
2χβsieve

))
=

+∞∑

ℓ=0

(
−α

(
πdlat
q

)2)ℓ

ℓ!
·

E
(
χ2ℓ
βsieve

)

2ℓ
∏ℓ

s=1

(
βsieve
2 + s

)

=
+∞∑

ℓ=0

(
−α

(
πdlat
q

)2)ℓ

ℓ!
·
∏ℓ−1

s=0

(
βsieve
2 + s

)

∏ℓ−1
s=0

(
βsieve
2 + 1 + s

)

=

∫ 1

0
βsieve · tβsieve−1 · e

−α

(
πdlatt
q

)2

dt

where the last equality is a well-known result concerning generalized hypergeometric func-
tions9.

Finally, in Equation (9.77), we chose T as the expected score E
(
F

(lsc)
senu (G⊺sfft)

)
of the

good guess. Through experimentation, we verified that the expectation of this score is ap-
proximately equal to its median, which justifies Approximation 5.

9.4.2.3.2 Justification of Approximation 6. On the other hand, Approximation 6 is
obtained by estimating the length of the short vectors in qΛ (Bglobal)

∨ + rproj, where rproj is
no longer the shortest vector in the lattice coset. For i and j small enough, we can make the
approximation that

P (Ni,j > 0) ≈ P (Ni,j = 1) . (9.84)

9Note that
∫ 1

0
βsieve · tβsieve−1e

−α
(

πdlatt
q

)2
dt = E

t∼Unif
(
Ball

βsieve
dlat

)
(
e
−α
(

πt
q

)2)
.
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Thus, the survival function of D, knowing that the achieved decoding distance is dlsc, can be
approximated by

P (D > T | dlsc) ≈ P (∃(i, j) ∈ E(T ) : Ni,j > 0) (9.85)

≈ min


1,E




∑

(i,j)∈E(T )
(i2,j2)∈N2

Ni,j





 (9.86)

where

E(T ) def
=
{
(i, j) ∈ R2

+ : N · Φdlsc(i, j) ⩾ T
}
. (9.87)

We have already observed that when we make the correct guess, the probability P (Ni,j > 0)

is particularly high for a pair (i, j) close to

(√
αβsieve

2 ,
√

αnlsc
2

)
. Now, in the case where we

make a wrong guess – that is (s̃enu, s̃fft) ̸= (senu, sfft) – then we have

E




∑

(i,j)∈E(T )
(i2,j2)∈N2

Ni,j


 ≈

∫

E(T )
V
(
Sphereβsieve

x

)
· V
(
Spherenfft

y

)
d(x, y)

V (qΛ(Bglobal)∨)

=

∫

E(T )

V
(
Sphere

βsieve
x

)
·V(Λ(B′))

qβsieve
· V(Sphere

nfft
y ·V(Λ(Blsc)))
qnfft d(x, y)

The volume of Λ(B′) is provided in Lemma 46, while the volume of Λ(Blsc) is qnfft−kfft .
Meanwhile, the integral can be evaluated numerically. Note that the Gaussian Heuristic
is necessary here, as q-ary lattices only behave approximately like random lattices.

Finally, under Model 8, Pwrong is the convolution product of the probability density func-
tion of the normal distribution N (0, N/2) and the survival function of D, that is given by

P (D > T ) =

∫ ∞

0
ψlsc(dlsc) · P (D > T | dlsc) ddlsc

9.4.2.4 Validating our analysis with simulations

We verify here the soundness of Approximation 6 for Pwrong, which is crucial for estimating the
number of false candidates. To this end, we implemented and ran Algorithm 31, computing

an experimental value for Pwrong, namely

∣∣∣{z∈Zkfft
q : F

(lsc)
0 (z)⩾T}

∣∣∣
qkfft

for different values of T . We

plotted it against its theoretical approximation in Figure 9.1. Notably, we found that the
experimental and theoretical estimates are in agreement, though the plot on the right suggests
that our analysis may be slightly optimistic.

We used the g6k library [ADH+19] to generate short vectors in a lattice and used polar
codes, along with the decoder described in Section 9.3.3, for the auxiliary code Clsc. We
provide the program used to generate Figure 9.1 in the GitHub repository10.

10https://github.com/kevin-carrier/CodedDualAttack/tree/main/verifyModel
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Figure 9.1: Experimental validation of Approximation 6 for Pwrong. The solid lines represent
our theoretical model, while the crosses indicate results obtained from simulations. The
theoretical model is drawn using the observed values for dlat and dlsc. In particular, dlsc
follows a normal distribution N (µlsc, σ

2
lsc) with mean µlsc and standard deviation σlsc that

are derived from the observed decoding distances of the [nfft, kfft]q polar codes used in the
experiments. The experimental data were obtained by running 4000 iterations of Algorithm
31, with each iteration using an input (A,b) taken uniformly at random in Zm×n

q ×Zm
q . The

parameters used are:
– on the left: q = 241, m = 40, n = 43, nlat = 35, nenu = 0, nfft = 8, kfft = 3, N = 25971,
βbkz = 32, βsieve = 44, dlat = 42.00, µlsc = 23.94 and σlsc = 3.38,
– on the right: q = 241, m = 40, n = 50, nlat = 42, nenu = 0, nfft = 8, kfft = 3, N = 25970,
βbkz = 35, βsieve = 41, dlat = 58.60, µlsc = 23.87 and σlsc = 3.30.

9.5 Application

In this section we give estimates for the cost of our attack against LWE problems from the
literature. In particular, we consider NIST PQC standardized candidate Kyber [SAB+20].
We summarize in Table 9.1 the parameters of Kyber and outline the security level required
by NIST, along with the attack complexities claimed by MATZOV. Note that MATZOV
findings are not widely agreed upon in the cryptographic community as the analysis is based
on independence assumptions which were strongly questioned in [DP23b].

The models C0, CC, and CN refer to different cost models for lattice reduction. These
models are consistent with those presented in [AS22], and they can be described as follows:

C0. Cost estimates in the “Core-SVP” cost model [ADPS16a] for Algorithm 30 using [BDGL16]
as the sieving oracle. This model assumes a single SVP call suffices to reduce a lattice.
It furthermore assumes that all lower-order terms in the exponent are zero.

CC. Cost estimates in a classical circuit model [AGPS20b, SAB+20, MAT22] for Algo-
rithm 30 using [BDGL16] as the sieving oracle. We derive these estimates by imple-
menting the cost estimates from [MAT22], those tagged “asymptotic” (cf. [MAB+22]).
This is the most detailed cost estimate available in the literature. However, we caution
that these estimates, too, ignore the cost of memory access and thus may significantly
underestimate the true cost. That is RAM access is not “free” (cf. [MAB+22]). This
cost model is called “list decoding-classical” in [AGPS20b].
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9. Assessing the impact of a variant of MATZOV’s dual attack

CN. Cost estimates in a query model for Algorithm 30 using [BDGL16] as the sieving oracle.
We include this cost model for completeness. This cost model is called “list decoding-
naive classical” in [AGPS20b].

These various models rely on [BDGL16] for nearest-neighbor search, using fuzzy hashing
functions based on product codes. It should be added that [Duc22] pointed out that the
original analysis of [BDGL16] assumes an ideal case, underestimating the decoding cost and
overlooking the suboptimal rate-distortion of product codes. Specifically, [Duc22] estimates
that for a sieving dimension of 380, the complexity of the nearest-neighbor search increases
by a factor of about 26. Here we kept the same way of computing the costs as in Matzov’s
paper [MAT22] to keep a fair comparison with their work. Delving further into this topic and
replacing for instance the simple product codes with a better approach is outside the scope
of this work.

For the same reasons, we only consider the classical RAM model. Adapting our analysis
to a more realistic memory access model, such as the one presented in [Jaq24], is left as
future work. Furthermore, we do not compare our results with the state-of-the-art primal
attacks. A fair comparison would require substantial effort, as it involves accounting for many
confounding factors, such as those listed in [DP23b, Appendix A]. Achieving a more precise
estimate – down to the gate count level, as done for instance in [SAB+20] – would demand a
significantly more in-depth analysis, which we leave as future work. Once again, our goal here
is to provide a proof of concept for dual lattice attacks and to help resolve the controversy
surrounding them. In line with this objective, we deliberately chose to work with a relatively
simple and likely suboptimal dual attack algorithm. There are several potential avenues for
improving it, including: (i) allowing false positives and adding a verification step to filter them
out, (ii) combining modulus switching with our technique, as it would enable computations
in characteristic 2, thereby allowing for a much more efficient fast Fourier transform, (iii)
replacing the naive product code in the sieving procedure by a better quantizer... We leave
these improvements for future work, as they fall outside the scope of this work.

9.5.1 Evaluating the complexity of our dual attack

We optimize the time complexity of Algorithm 31, as established in Theorem 10, under
the assumptions outlined in Lemma 47. We assume that 1 − µ ≈ 1, and we constrain the
parameters N and T such that ε := RPwrong q

kfft remains close to 1; in particular, in our
setting, η is always greater than 0.62. Additionally, we select T following Approximation 5,
ensuring that Pgood ≈ 1

2 . At the same time, we ensure that ε remains close to 0. These
choices guarantee that the overall success probability11 of our algorithm is lower-bounded by
approximately 0.31− ε ≈ 0.31.

Our complexity results are summarized in the last three columns of Table 9.1. The
associated parameters are given in Appendix 9.6.3, Table 9.3 and some relevant intermediate
quantities are summarized in Appendix 9.6.3, Table 9.4. Note that the quantity dlat is defined
from the other parameters as in Lemma 45. The mean µlsc of the decoding distance dlsc and
its standard deviation σlsc are computed by choosing an [nfft, kfft]q polar code and by decoding
many (a thousand) random words of Znfft

q . For all instances of Kyber, we used a list size
of L = 1 in the decoder (see Section 9.3.3, Lemma 48). This list size allows us to achieve a

decoding distance close enough to the optimal decoding distance dGV
def
=
√

nfft
2πeq

1− kfft
nfft without

11Note that in [MAT22], this success probability was approximately 0.25.

251



9.6. Appendices

incurring additional cost in the complexity. Finally, we provide in the GitHub repository12 a
file verifying that our parameters achieve the complexity claims and verify all the constraints.

Scheme
LWE

parameters

Security
level

required
by NIST

MATZOV
Complexity

Complexity
of our

Algorithm 31

q n α C0 CC CN C0 CC CN

Kyber-
512

3329 512 3
AES-128
(143
bits)

115.4 139.2 134.4 121.8 139.5 134.5

Kyber-
768

3329 768 2
AES-192
(207
bits)

173.7 196.1 190.6 173.0 195.1 189.8

Kyber-
1024

3329 1024 2
AES-256
(272
bits)

241.8 262.4 256.1 239.0 259.7 254.6

Table 9.1: The LWE parameters for Kyber, the security level required by NIST, the
claimed log2 complexity of MATZOV attack as given in [AS22, Table 2], and the log2

complexity of our dual attack Algorithm 31.

9.6 Appendices

9.6.1 Polar codes over a ring of integers

In this section we give more details about the construction of polar codes over Zq that is
mentioned in Subsection 9.3.3. We then verify that, when decoding random words, it is
possible, to achieve a typical decoding distance which is very close to the lattice analogue of
the Gilbert-Varshamov distance that we recall to be

ω ≈
√

n

2πe
q1−

k
n . (9.88)

where n and k are respectively the length and the dimension of the polar code.

9.6.1.1 Construction

Let assume a codeword in Zn
q of which each symbol is transmitted through a Gaussian channel

of standard deviation σ
def
= ω√

n
. The polar code construction basically consists of transforming

those n Gaussian channels into n virtual channels that are, for most of them, either of maximal
or minimal entropy. The idea then is to fix (or in other words freeze) the information that
will transit via the bad channels and involve the good channels for the k symbols of useful
information.

Our construction essentially follows the papers [ŞTA09, Chi14, Sav21]. We refer to those
articles for more details about polar codes. It is a recursive construction which can be de-
scribed as follows.

12https://github.com/kevin-carrier/CodedDualAttack/tree/main/OptimizeCodedDualAttack
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Definition 57 ((U + V, αU)-construction). Let U and V be two linear codes of the same
length n over Zq and let α ∈ Z∗

q be an invertible scalar. The (U + V, αV ) is a Zq-linear code
of length 2n defined by

(U + V, αU)
def
= {(u+ v, αu) : u ∈ U and v ∈ V } (9.89)

A polar code of length n
def
= 2m and dimension k is then defined by

Definition 58 (polar code). Let F be a subset of {0, 1}m of size 2m−k and let α be a function
mapping the binary words of length < m to Z∗

q. The polar code of length 2m associated to F
and α is defined recursively by

C
def
= Uε (9.90)

where the Ux are codes of length 1 for all x ∈ {0, 1}m (we denote by ε the empty binary word)
and are given by

Ux =

{
{0} if x ∈ F
Zq otherwise

(9.91)

and the other Ux’s where x is a binary word of length < m are defined recursively by

Ux
def
=
(
U0||x + U1||x, α(x)U0||x

)
. (9.92)

Thus, a polar code is fully defined by the set F of frozen positions and the α(x)’s. In
[Chi14], it is admitted that choosing the α(x)’s uniformly at random in Z∗

q is good enough.
However, in [Sav21], it is shown that those coefficients can be optimized. Thereafter, we do
not use the optimization technique from [Sav21] but simply try several polar codes then choose
the best of them. On another hand, we classically determine the optimal frozen positions F
using Monte-Carlo simulation: we run many times a genie-aided decoder for estimating the
probability distribution of each virtual channel then selecting the worst of them; that are the
2m − k virtual channels for which the error probabilities are the highest.

9.6.1.2 Decoding algorithm

The Successive Cancelation (SC) decoding algorithm (see [ŞTA09, Chi14, Sav21]) can be
described as a recursive decoding algorithm. For each code Ux ⊆ Z2m−t

q such that x ∈ {0, 1}t
and t ∈ J0,m− 1K, we decode a noisy codeword in this code by using recursively the decoders
of U0||x and U1||x.

Let c
def
= (c1, · · · , c2m−t)

def
= (u+ v, α(x)u) be a codeword in Ux; i.e.

u
def
= (u1, · · · , u2m−t−1) and v

def
= (v1, · · · , v2m−t−1) are respectively in U0||x and U1||x. Let

assume that c is transmitted through a channel W (x); let

y
def
= (y1, · · · , y2m−t)

def
= (yℓ,yr) ∈ Z2m−t−1

q × Z2m−t−1

q (9.93)

be the received word. We assume that for each position i ∈
q
1, 2m−t

y
and symbol s ∈ Zq, we

know the probability that the transmitted symbol is s knowing that the received one is yi:

Π
(x)
i (s)

def
= P (ci = s|yi) (9.94)
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Instead of decoding directly y, we decode first yℓ − α(x)−1yr expecting to find v ∈ U1||x.

The virtual channel through which v has transited is then the serialization of two W (x)

channels that we denote by W (1||x). Thus for each coordinate i ∈
q
1, 2m−t−1

y
and symbol

s ∈ Zq, we have the probability

Π
(1||x)
i (s)

def
= P (vi = s|yi, yi+2m−t−1) (9.95)

=
∑

s′∈Zq

Π
(x)
i (s+ s′) ·Π(x)

i+2m−t−1(α(x) · s′) (9.96)

=
∑

s′∈Zq

Π
(x)
i (s− s′) ·Π(x)

i+2m−t−1(−α(x) · s′) (9.97)

=
(
Π

(x)
i ∗Π(x)

i+2m−t−1

)
(s) (9.98)

where Π
(x)
i (s)

def
= Π

(x)
i (−α(x) · s).

On another hand, let us assume that the decoding of yℓ−α(x)−1yr has led us to the vector
ṽ that we expect to be v (for the genie-aided decoder used for the construction of the code,
we actually take ṽ = v, regardless of the result of the decoding of yℓ − α(x)−1yr). We now
have two independent noisy versions of the same vector u that are α(x)−1yr and yℓ − ṽ. In
other words, supposing ṽ = v, the vector u has been sent twice through the channelW (x); we
denote by W (0||x) the resulting channel and for each coordinate i ∈

q
1, 2m−t−1

y
and symbol

s ∈ Zq, we have the probability

Π
(0||x)
i (s)

def
= P (ui = s|yi, yi+2m−t−1) (9.99)

=
1

η
·Π(x)

i (s+ ṽi) ·Π(x)
i+2m−t−1(α(x) · s) (9.100)

where η
def
=
∑

s′∈Zq
Π

(x)
i (s′ + ṽi) ·Π(x)

i+2m−t−1(α(x) · s′) is a normalization factor.

Finally, for decoding a received word y ∈ Z2m
q in the code Uε that has been sent through

a Gaussian channel of standard deviation σ, one essentially has to compute recursively the

vector probabilities Π
(x)
i for all t ∈ J1,mK, x ∈ {0, 1}t and i ∈

q
1, 2m−t

y
using the Equations

(9.98) and (9.100). Note that the initial channel W (ε) is the original Gaussian channel; so for
all i ∈ J1, 2mK and s ∈ Zq, we have

Π
(ε)
i (s) = P

(
GZq ,σ = yi − s

)
(9.101)

where GZq ,σ is the modular Gaussian distribution defined as follows:

Definition 59 (Discrete Gaussian Distribution). Let σ > 0 and let S ⊂ R be a discrete set.
The discrete Gaussian distribution GS,σ over S is defined by:

P (GS,σ = x)
def
=

ρσ(x)∑
y∈S ρσ(y)

(9.102)

where ρσ(x)
def
= exp(−x2/2σ2) is the probability density function of the normal distribution

N(0, σ2).
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In particular, if S def
= Zq then we speak of modular Gaussian distribution and for all x ∈ Zq,

we have

P
(
GZq ,σ = x

)
= P (GZ,σ ∈ x+ qZ) =

∑
u∈x+qZ ρσ(u)∑

y∈Z ρσ(y)
(9.103)

where x is assimilated to any of its representatives.

When arriving to the codes on the leaves – that are the codes Ux such that x ∈ {0, 1}m –
then we can exhaustively decode Ux:

1. if x ∈ F (meaning the corresponding symbol is frozen) then the only possible codeword
in Ux is the symbol 0,

2. if x ̸∈ F , then we choose the maximum likelihood codeword in Ux that is the symbol s

for which Π
(x)
1 (s) is the greatest.

The running time of Successive Cancelation decoding is given by the following lemma:

Lemma 49 (Complexity of the SC decoder). Assuming q is a power of 2. The running time
for decoding a word in a polar code of length 2m and dimension k over Zq is:

TSC ⩽ 3 ·
(
Cadd ·N (add)

FFT (q) + Cmul ·N (mul)
FFT (q)

)
·m · 2m (9.104)

where Cadd and Cmul are the costs of an addition and a multiplication, respectively, and

N
(add)
FFT (q) and N

(mul)
FFT (q) are the number of additions and multiplications needed to achieve

a discrete Fourier transform over Zq (Proposition 59 provides those numbers for q = 3329,
which were computed using the FFTW software [FJ05]).

Proof. For all t ∈ J1,mK, x ∈ {0, 1}t and i ∈
q
1, 2m−t

y
– i.e. for m · 2m triplets (t,x, i) –

we can compute the vector of probabilities Π
(x)
i with at most 3 · q · log2(q) multiplications.

Indeed, we either have to compute Equation (9.98) or Equation (9.100). In the first case, it is
a convolution; this can be done with the help of three fast Fourier transforms, with each FFT

requiring N
(add)
FFT (q) additions and N

(mul)
FFT (q) multiplications. In the second case, we only have

to do 2.q multiplications and q additions, which is less than the cost of a convolution.

Remark 27. We could reduce the cost of the SC decoder by considering the vectors of LLR
(Log Likelihood Ratio) instead of the vectors of probabilities. This trick allows to transform
multiplications into additions.

9.6.1.3 List-Decoding

We can modify the above SC decoder to obtain a probabilistic decoder. To this end, when
decoding non-frozen symbols in the codes on the leaves Ux where x ∈ {0, 1}m\F , then output

the symbol s according to the distribution Π
(x)
1 instead of returning the one with the best

probability. Note that as m tends to infinity and k
2m remains constant, for x ∈ {0, 1}m \ F ,

the channels W (x)’s have capacity very close to 1 and for x ∈ F , they have capacity very
close to 1. Because of this polarization phenomenon, we can prove similarly to [KU10] that
our probabilistic SC decoder achieves an average decoding distance

d =
√

2m

2πe · q
1− k

2m · (1 + o() 1) (9.105)
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when decoding a random vector in Z2m
q .

To turn this probabilistic SC decoder into a list decoder, one only has to running it L
times then choosing the codeword that minimizes the decoding distance. The complexity of
a such algorithm is essentially L times the complexity of the SC decoder given by Lemma
49. Note that, contrary to some more classical list decoders of polar codes, the L decoding
procedures of our algorithm can be trivially parallelized.

9.6.1.4 Puncturing

The polar codes construction above is about codes of length that are a power of 2. In our case,
we may require codes of other length. A simple way for reducing the length of a code without
changing its dimension is to puncture it. Let n, k be two positive integers. We build a linear
code of length n and dimension k by puncturing a polar code of length 2m and dimension k

where m
def
= ⌈log2(n)⌉. Let denote by ℓ

def
= 2m − n the number of symbol to puncture. The

puncturing operation essentially consists of ignoring the ℓ first symbols of the codeword; that
is equivalent to suppose that the ℓ first physical channels through which transit the codewords
are of maximal entropy:

Π
(ε)
i (s)

def
=

1

q
∀i ∈ J1, ℓK (9.106)

Note that we made this assumption both for the decoder and also for the genie-aided decoder
used to determine the frozen positions.

9.6.2 A rough reason on why we are outside the contradictory regime

Here we explain in an informal way why it is reasonable, given the parameters of our attack,
that the good guess is distinguishable from the bad guesses. Of course, we refer the reader to
Section 9.4.2 for the complete formal analysis.

An important insight from Approximation 4 is that the score F
(lsc)
s̃enu

(G⊺s̃fft) depends on

the length enumerator of the vectors in the coset qΛ (Bglobal)
∨ + rproj. Specifically, for the

good guess (s̃enu, s̃fft) = (senu, sfft), this lattice coset contains a particularly short vector rproj =

(P(e, slat), sfft) where P
def
= B′ (B′⊺B′)−1B′⊺ is the orthogonal projection onto span(B′). In

contrast, for wrong guesses where (s̃enu, s̃fft) ̸= (senu, sfft), the shortest vector is no longer rproj.
This observation provides a preliminary answer to the indistinguishability question posed in
[DP23b]. Indeed, we cannot distinguish the good guess from the wrong ones if the length of
(P(e, slat), sfft) is greater than the length of the shortest vector in qΛ (Bglobal)

∨ + rproj. Given
that the coordinates of (e, slat, sfft) are i.i.d. random variables following a centered binomial
distribution with parameter α, we estimate the length of (P(e, slat), sfft) to be

|(P(e, slat), sfft)| ≈
√

α(βsieve+nfft)
2 . (9.107)

On the other hand, if Λ (Bglobal) is treated as a random lattice with volume Vglobal
def
=

V (Λ(Bglobal)) = V (Λ(B′)) · V (Λ(Blsc)), then, using the Gaussian Heuristic, we can estimate
the length of the shortest vector in the lattice coset to be

λ1
(
qΛ (Bglobal)

∨ + rproj
)
≈ q

V
1

βsieve+nfft
global

·
√

βsieve+nfft
2πe . (9.108)
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However, we do not consider just one such coset, but rather M
def
= R · qkfft . Therefore, the

probability of having an even smaller shortest vector in one of the cosets is not negligible. In
[DP23b, Section 4.3], the shortest vector, across all cosets, is estimated to be

≈ λ1
(
qΛ (Bglobal)

∨ + rproj
)

M
1

βsieve+nfft

. (9.109)

Table 9.2 compares (9.107) and (9.109) for the parameters derived for Kyber in Section
9.5.

Scheme
C0 CC CN

Eq. (9.107) Eq.(9.109) Eq. (9.107) Eq.(9.109) Eq. (9.107) Eq.(9.109)

Kyber-512 25.42 26.61 25.66 27.21 25.57 26.58

Kyber-768 25.63 26.70 25.82 27.23 25.75 27.19

Kyber-1024 30.25 31.17 30.38 31.99 30.48 32.34

Table 9.2: Comparison between the estimated length of (P(e, slat), sfft) and the estimated
length of the shortest vector in all the cosets qΛ (Bglobal)

∨ + rproj, based on the parameters
provided in Table 9.3 (Appendix 9.6.3). We are outside the contradictory regime raised in

[DP23b] as soon as Eq.(9.107) < Eq.(9.109).

In Subsection 9.4.2, we refine these calculations to provide an accurate approximation of

F
(lsc)
s̃enu

(G⊺s̃fft), which we validate through simulations. In particular, we no longer assume
that Λ (Bglobal) is a random lattice of volume Vglobal; instead, we separately analyze the first
βsieve coordinates and the last nfft coordinates.

9.6.3 Parameter tables related to our complexity claim

Here we give the parameters related to the complexities given in Table 9.1.
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Chapter 10

Documentation for a software
supporting our claims

Summary

This chapter contains, as is, the documentation for a software that is available at

https://artifacts.iacr.org/eurocrypt/2024/a10/

The software allows to:

1. Validate experimentally the Poisson model (see Model 5) used in the analysis of double-
RLPN. It can plot figures similar to Fig. 6.2 comparing the experimental distribution of
the score function against that given by the Poisson model. This is done with a C++
implementation of double-RLPN.

2. Verify the asymptotic complexity claims made for double-RLPN. This can be used to
plot figures similar to Fig. 6.3 that gives the asymptotic complexity exponent of double-
RLPN. It contains a dataset with some already optimized asymptotic parameters and
a script computing the complexities from these parameters.

3. Verify our model (see Model 7) that predicts the simple score function for lattice-based
dual attacks. This allows to plot figures closely related to the prediction of the score
function that we gave in Fig. 8.2 of Chapter 8.

It was published as an associated software to verify the complexity claims of [CDMT24], all
the notations used in this documentation are thus the ones of [CDMT24].
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Documentation of the repository of the paper

”Reduction from sparse LPN to LPN, Dual

Attack 3.0”

June 7, 2024

Contents

1 Overview of the repository 1

2 Verification of the Poisson Model 2

3 Prediction of lattice score function 7

4 Verification of complexity claims 8

1 Overview of the repository

References to Proposition, Figure or Model point to the eprint version of the
article uploaded on December 4th:

https://eprint.iacr.org/archive/2023/1852/1701452846.pdf

Summary of each folder

• ”Verify Poisson Model”: A program to show that the poisson Model 1 is
valid, it reproduces a figure close to Figure 2. It contains in particular
parts of doubleRLPN implemented in C++. Documented in Section 2.

• ”Lattice Prediction”: A program to show that we can predict the dis-
tribution of the score function of dual attacks in lattices. It essentially
reproduces Figure 3 and Figure 4. Documented in Section 3.

• ”Complexity Claim”: A program to verify the complexity claims relative
to doubleRLPN. It contains in particular a dataset with the optimized
asymptotic parameters of doubleRLPN to decode at the relative Gilbert-
Varshamov distance. Documented in Section 4.

1



Dependencies

For ”Verify Poisson Model”

• gcc/g++, available at https://gcc.gnu.org. Tested with version 13.1
but an older version with support for C++20 should suffice.

For ”Verify Poisson Model” and ”Complexity Claim”

• python3, available at https://www.python.org/downloads/. Tested with
version 3.11.3. Modules needed:

– Python 3 standard Library

– NumPy (Tested with version 1.24.3)

– Scipy (Tested with version 1.10.1)

– Matplotlib (Tested with version 3.7.1)

For ”Lattice Prediction”

• Jupyter notebook, available at https://jupyter.org/. Tested with ver-
sion 6.5.4.

• SageMath, available at https://www.sagemath.org/. Tested with ver-
sion 10.0.

• unzip.

Everything was tested on a 64 bit Arch-Linux distribution.

Acknowledgement

We would like to warmly thank the anonymous reviewers of Eurocrypt 2024’s
artifacts whose comments allowed to greatly improve the quality of this artifact.

2 Verification of the Poisson Model

In folder

Verify_Poisson_Model/

The goal here is to verify the Poisson Model which is used to bound the expected
number of false candidates in Proposition 5, namely the quantity

E
(∣∣∣{x ∈ Fkaux

2 \ {ePGaux} : ̂f
y,H̃ ,Gaux

(x) ≥ T}
∣∣∣
)
.

The goal is to show that the expected number of false candidates is the same
experimentally and by supposing that the Poisson Model is true.
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Remark : This section does not exactly reproduce Figure 2 of the article. The
latter was generated in the case where the set H of LPN samples is a random

subset of H̃ of size N . While here we focus on the framework of Proposition 5,

that is when H = H̃ , which is much simpler and shows in the same manner
that the Poisson Model is valid.

Overview of the folder

• ”plot.py”: The main script. Plot the number of false candidates given by
doubleRLPN against the number of false candidates given by the Poisson
Model. This script uses scripts (that can be run independently) contained
in the following two folders.

• ”doubleRLPN”: contains parts of doubleRLPN implemented in C++. Al-
low to compute the expected number of false candidates in doubleRLPN.
Documented in Section 2.1.

• ”Poisson Model”: computes the expected number of false candidates un-
der the Poisson Model. Documented in Section 2.2.

How to run and what is does

-python3 plot.py [--options] w taux kaux s k n t Niter

Options:

• --d1. Create a dataset containing the expected number of false candidates
given experimentally by doubleRLPN. More specifically, it runs the script
documented in Section 2.1 with the same parameters.

• --d2. Create a dataset containing the expected number of false candi-
dates given by the Poisson Model. More specifically, it runs the script
documented in Section 2.2 with the same parameters.

• --plot. Combine the two previous datasets into a plot. This option must
be either combined with option d1 and d2 if the corresponding datasets
do not already exist, or can be used alone if the datasets already exist.

Alternatively, the script can be run without options which is equivalent to run
it with --d1, --d2 and --plot all together.
Example:

-python3 plot.py 5 2 20 28 30 60 8 100

which is equivalent to running

-python3 plot.py --d1 --d2 --plot 5 2 20 28 30 60 8 100

Executing this command can take a few hours.
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Typical output

An image in

plot/plot_w_taux_kaux_s_k_n_Niter.pdf

Example with

plot/plot_5_2_20_28_30_60_8_100.pdf

The limit on the T axis of the plot is set to T such that the number of false
candidates is equal to 500

Niter
, this prevents the two curve from diverging from

each other due to lack of data. Consider increasing Niter to get information for
larger T ’s. Niter is advised to be more than 1000.
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2.1 Number of false candidates in doubleRLPN

In folder

Verify_Poisson_Model/doubleRLPN/

What it does

Gives an empirical value for the expected number of false candidates in each
iteration of doubleRLPN for different values of threshold T . More precisely:
given the parameters of the algorithm w, taux, kaux, s, k, n, t and Niter it runs a
number Niter of times the following procedure:
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• Do:

– Take C and Caux uniformly at random in [n, k] and [s, kaux] respec-
tively by choosing two generator matrices G and Gaux uniformly at
random among matrices of Fk×n

2 of rank k and matrices of Fkaux×s
2 of

rank kaux. Compute y = c+ e where c and e are taken uniformly at
random in C and {x ∈ Fn

2 : |x| = t} respectively. Choose uniformly
at random two complementary subsets of J1, nK, P and N of size s
and n− s respectively.

While CP is not of dimension s.

• Compute the set of false candidates

{x ∈ Fkaux
2 \ {ePGaux} : ̂f

y,H̃ ,Gaux
(x) ≥ T}

where for x ∈ Fkaux
2 ,

̂f
y,H̃ ,Gaux

(x) =
∑

(h,maux)∈H̃

(−1)⟨y,h⟩−⟨x,maux⟩

and

H̃ = {(h,maux) ∈ C⊥ × Caux : |hN | = w and |hP +mauxGaux| = taux}.

It outputs a file containing, for different values of T , the experimental average
(computed over the Niter iterations) number of false candidates.

How to run

-python3 doubleRLPN.py w taux kaux s k n t Niter

Example :

-python3 doubleRLPN.py 5 2 20 28 30 60 8 100

Niter is advised to be more than 1000 if possible to get the most accurate
estimation as possible.

Typical output

An output file in

data/doubleRLPN_w_taux_kaux_s_k_n_Niter.csv

of the format

T1,yT1

T2,yT2

...

where yTi
is the average number of false candidates for the threshold Ti.
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2.2 Number of false candidates under the Poisson Model

In folder

Verify_Poisson_Model/Poisson_Model

What it does

Gives an estimate of the expected number of false candidates under the Poisson
Model. More precisely, similarly to Lemma 5 we can show that the expected
number of false candidates can be rewritten as

EC,Caux

(∣∣∣{x ∈ Fkaux
2 \ {ePGaux} : ̂f

y,H̃ ,Gaux
(x) ≥ T}

∣∣∣
)
=

(
2kaux − 1

)
PC,Caux,x

(
̂f

y,H̃ ,Gaux
(x) ≥ T

)

where C and Caux uniformly at random in [n, k] and [s, kaux] respectively and
x is taken uniformly at random in Fkaux

2 \ {ePGaux}. Using Lemma 1 and
Proposition 4 we have that

̂f
y,H̃ ,Gaux

=
1

2k−kaux

n−s∑

i=0

s∑

j=0

Ni,jK
(n−s)
w (i)K

(s)
taux (j) .

Then, under the Poisson model (replacing Ni,j by a compound Poisson variable)
we have that

E
(∣∣∣{x ∈ Fkaux

2 \ {ePGaux} : ̂f
y,H̃ ,Gaux

(x) ≥ T}
∣∣∣
)
=
(
2kaux − 1

)
P (Z ≥ T )

(1)
where

Z =
1

2k−kaux

n−s∑

i=0

s∑

j=0

Ñi,jK
(n−s)
w (i)K

(s)
taux (j)

and

Ñi,j ∼ Poisson

(
Ñj

(
n−s
i

)

2n−k

)
and Ñj ∼ Poisson

( (
s
j

)

2kaux

)

and where the variables are independent.
Given the parameters of the algorithm w, taux, kaux, s, k, n, t and Niter, this

script estimates Equation (1) by a monte-carlo method: it draws Niter 2
kaux

variables Z to heuristically estimate P (Z ≥ T ).

How to run

-python3 PoissonModel.py w taux kaux s k n t Niter

Example :

-python3 PoissonModel.py 5 2 20 28 30 60 8 100
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Niter is advised to be more than 1000 if possible to get the most accurate
estimation as possible. This part is usually the longest and can take several
hours with the parameters given as example. Consider parallelizing the code.

Typical output

An output file in

data/PoissonModel_w_taux_kaux_s_k_n_Niter.csv

of the format

T1,yT1

T2,yT2

...

where yTi is the average number of false candidates for the threshold Ti under
the Poisson Model.

3 Prediction of lattice score function

In folder

Lattice_Prediction/

Overview of the folder

• prediction_lattices.ipynb

– Reproduces Figure 3 and 4 for different parameters as described in
Section 8 of the article. w appearing in Equation (19) is taken here
as the average length of the short dual vectors returned by the sieve.
They are stored in the following file.

• out_nX_fftY_enumZ.txt

– File containing information about the lattice and short dual vectors
returned by the sieve. This file was created by showing the variables
”Bprime” (before the call to the ”reduce and sieve” function) and
”dual db” of https://github.com/ludopulles/DoesDualSieveWork/
tree/main/code/unif_score.py with input n = X, fft= Y, enum=
Z (q is set to default to 3329).

• Data_DP23/

– is taken from https://github.com/ludopulles/DoesDualSieveWork/

tree/main/data
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How to run

First, unzip the following compressed dataset:

-unzip out_n90_fft22_enum26.zip

then, run the notebook:

-jupyter notebook prediction_lattices.ipynb

4 Verification of complexity claims

In folder

Complexity_Claim/

The files are meant to verify the complexity claims relative to doubleRLPN.

Overview of the folder

• doubleRLPN_BJMM12.csv

– Contains, for different code rates R, the optimized relative parame-
ters and the associated complexity of the doubleRLPN decoder to de-
code at the relative Gilbert-Varshamov distance when using BJMM12
technique to compute low-weight parity-checks. These parameters
are used in Proposition 9 to compute the asymptotic complexity of
the algorithm. The file contains, for different rates R the values of
σ,Raux, ν, ω, τ along with λ1, λ2, π1, π2, the later 4 parameters are
used in Proposition 11 to compute the complexity of computing the
parity-checks using BJMM12 technique. All the parameters (even
λ1, ...) are written relatively to n. τaux is implicitly set to be equal
to σh−1

2

(
1− Raux

σ

)
and Naux is implicitly set to be equal to 1. The

parameters relative to the two subroutines Dumer-Decoder and
Solve-SubProblem will be computed on the fly in the following
file.

• complexity_doubleRLPN_BJMM12.py

– Using the relative parameters contained in the parameter file, this
script re-computes, using the formula in Proposition 9, the time com-
plexity exponent (αdoubleRLPN) of the doubleRLPN decoder. This
script also assert that the parameters meet the constraints of Propo-
sition 9 and Proposition 11 (executions fails if one constraint is not
verified).
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How to run

-python3 complexity_doubleRLPN_BJMM12.py

Typical output

A list of complexity exponent

Rate: 0.01000; Complexity: 0.00539

Rate: 0.02000; Complexity: 0.01009

...
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Conclusion

We significantly developed code-based dual attacks. Our best dual attack significantly asymp-
totically beats all previously known generic decoders for rates smaller than 0.42 at the Gilbert-
Varshamov distance and is provable without using any assumptions. Second, we devised a
new lattice-based dual attack that improves upon previous lattice-based dual attacks. We
developed new tools to analyze lattice-based dual attacks without using the flawed indepen-
dence assumptions. In particular, we show that our attack diminishes the security of the NIST
standard Kyber. This positively answers the recent controversy that questioned whether a
lattice-based dual-”sieve” attack could really be competitive. Here are some future works we
would like to investigate in relation to our code-based dual attacks.

• Note that double-RLPN could be improved in several ways. In a previous version of
[CDMT24] that we never published but that was submitted in October 2022 to Euro-
crypt 2023 we added an extra Prange bet that eP was zero on a few coordinates. This
allows us to diminish the dimension of the underlying LPN problem and we can iterate
this bet (P stays fixed but at each iteration we bet that some random positions of P
are error free). The gain comes from the fact that we can reuse the dual vectors of low
weight on N at each iteration. We did not present this strategy here but it allows a
slight gain in the complexity exponent. Second, we only studied our algorithm when
the Dumer or BJMM subroutine are used to compute the low-weight dual vectors but
surely using more advanced techniques such as an iteration of [BM18] or maybe the
recent sieving algorithms will yield better results.

• In Chapter 6, we quickly mentioned that the complexity of double-RLPN at rate R
when the error weight t = o(n) is sublinear is 2−t log2(1−R)(1+o(1))n. So, and contrary to
Statistical decoding and RLPN, this seems like a reasonable algorithm in the sublinear
regime. Indeed, the first-order term −t log2 (1−R) is that of all ISD’s in this regime.
The question remains to evaluate in practice its complexity against schemes like HQC.

• We would like to investigate the potential of dual attacks against variants of the decoding
problem we targeted in this thesis. For example when the code is quasi-cyclic. We would
also like to investigate the Hamming q-ary decoding problem and variants when the error
has a regular shape, or when the error lies in a subgroup of Fn

q as in the recent CROSS
signature scheme.

• We reduced the analysis of RLPN and double-RLPN to devising exponential concentra-
tion bounds on the weight enumerator of random linear codes, see Eq. (5.6). We would
like to investigate to what extent these exponential concentration bounds are true.
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Abstract

In this thesis, we design and analyze dual attacks for solving the decoding problem. In code-
based cryptography dual attacks, a.k.a statistical decoding, were introduced by Al-Jabri in
2001. However, it turned out that his algorithm was not competitive against Information
Set Decoders (ISD). Starting with the Prange algorithm in 1962, the ISD’s have been the
dominant family of decoders for the last 60 years and are used to parameterize code-based
schemes.

Our main contribution is to dramatically improve dual attacks and show that they can
beat the best ISD’s for some parameter regimes. In particular, our best attack asymptotically
significantly beats all previously known decoders for codes of constant rates smaller than
0.42 at the Gilbert-Varshamov distance. This result was obtained by revisiting Al-Jabri’s
statistical decoding algorithm and generalizing it using a splitting strategy to reduce decoding
to a problem that is essentially the Learning Parity with Noise (LPN) problem. We then
solve it using standard solvers. Part of our work also lies in the development of tools to
analyze these attacks: we do not use the traditional independence assumptions that were
used to analyze statistical decoding and which must be used with great care. Our tools
are based on the Poisson summation formula and a model for the distribution of the weight
enumerator of random linear codes. We base the analysis of our attacks on this model and
verify it experimentally. We also devise a variant of our most advanced attack that has, up
to polynomial factors, the same performance but which we can fully prove without using this
model.

The second part of this work is dedicated to devising and analyzing dual attacks in lattice-
based cryptography. Here, the problem that we target is the Learning With Errors (LWE)
problem. In this case, dual attacks have been recently vastly improved, partly using a similar
splitting strategy. In particular, two recent attacks, first by Guo & Johansson in 2021 and
then by Matzov in 2022 claimed to reduce the security of the NIST standard Kyber (ML-
KEM). However, Ducas & Pulles showed in 2023 that the key independence assumptions used
in the analysis of those recent lattice-based attacks were flawed. This left open the question
of how to analyze these attacks and whether they could really work as expected. We devise a
slight variant of these recent dual attacks and provide new tools for analyzing them without
these assumptions. In particular, we show that our attack comes dangerously close to Kyber’s
security claims and that we slightly beat those recent attacks. This settles the controversy
over whether a dual-sieve attack can really work as expected.
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