Design and analysis of dual attacks in code- and lattice-based cryptography

PhD Defense, Inria Paris, September 30, 2025

Charles Meyer-Hilfiger, Irisa & Univ. Rennes

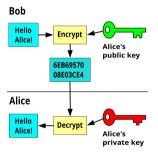
Prepared at Inria Paris, COSMIQ

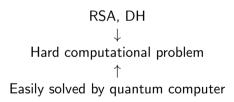
Under the supervision of Nicolas Sendrier and Jean-Pierre Tillich

- Introduction
 - Background
 - Code-Based Contribution
 - Lattice-Based Contribution
- 2 The first dual attack : Statistical Decoding
- 3 Our first attack : Reducing Decoding to LPN (RLPN)
- Our most advanced attack : doubleRLPN
- 5 A fully provable variant of our dual attacks
- 6 Lattices

Public-Key cryptography

Used for safe communication over insecure channel without pre-shared secret.





Post-Quantum (Public-Key) cryptography

Lattice, Code, Multivariate, Isogenies, ...

	Cadabasad	Lattice based
	Code-based	Lattice-based
Encryption	HQC (NIST) , McEliece,	Kyber (NIST),
	Bike,	, ,
Signature	SDiTH,	Dilithium (NIST),
Security	Decoding problem	Learning with Errors

 \rightarrow **Hard** problem even for quantum computer

Complexity of best algorithms used to parametrize schemes.

Post-Quantum (Public-Key) cryptography

Lattice, Code, Multivariate, Isogenies, ...

	Code-based	Lattice-based
Encryption	HQC (NIST), McEliece,	Kyber (NIST),
	Bike,	
Signature	SDiTH,	Dilithium (NIST),
Security	Decoding problem	Learning with Errors

 \rightarrow Hard problem even for quantum computer

Complexity of best algorithms used to parametrize schemes.

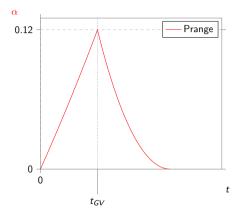
Binary Decoding Problem

Binary Linear code
$$\rightarrow$$
 $\mathscr{C} = \{ \mathbf{mG} : \mathbf{m} \in \mathbb{F}_2^n \}$

Decoding at a **small** distance *t*:

- Input: $(G, y = c + e) \in \mathbb{F}_2^{k \times n} \times \mathbb{F}_2^n$ where $c \in \mathscr{C}$ and |e| = t
- Output: **e** such that $|\mathbf{e}| = t$ and $\mathbf{y} \mathbf{e} \in \mathscr{C}$

Hardness of the decoding problem as a function of the distance



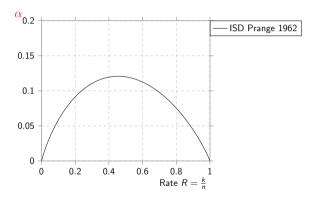
Complexity : $2^{\alpha n}$

Gilbert-Varshamov distance t_{GV} is where the problem is hardest

Complexity of some decoders

Complexity is $2^{\alpha n}$

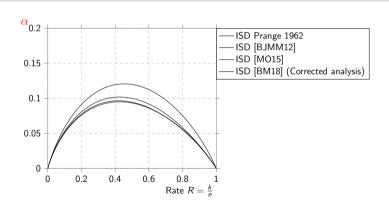
$$k \stackrel{\triangle}{=} \text{Dimension}(\mathscr{C})$$



Complexity of some decoders

Main family of algorithms for 60 years : Information Set Decoders (ISD)

$$k \stackrel{\triangle}{=} \text{Dimension} (\mathcal{C})$$



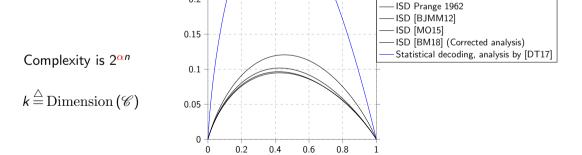
Complexity of some decoders

 $\alpha_{0.2}$

Main family of algorithms for 60 years : Information Set Decoders (ISD)

An outlier, a Dual attack: Statistical decoding by Al-Jabri 2001

ightarrow Debris-Alazard & Tillich 2017 shows that it is asymptotically not competitive.



Rate $R = \frac{k}{R}$

- Introduction
 - Background
 - Code-Based Contribution
 - Lattice-Based Contribution
- 2 The first dual attack : Statistical Decoding
- 3 Our first attack : Reducing Decoding to LPN (RLPN)
- Our most advanced attack : doubleRLPN
- 5 A fully provable variant of our dual attacks
- 6 Lattices

Code-Based Contribution of this thesis (1)

New dual attacks:

State-of-art: Code-based dual attacks are not competitive

Our work:

- Significant improvement of statistical decoding by generalizing it.
- Our best attack outperforms Information Set Decoders for a significant regime.

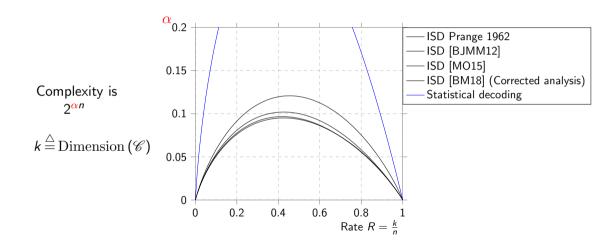
Analyzing dual attacks:

State-of-art: Analyze of dual attacks require the use of key Independence assumption

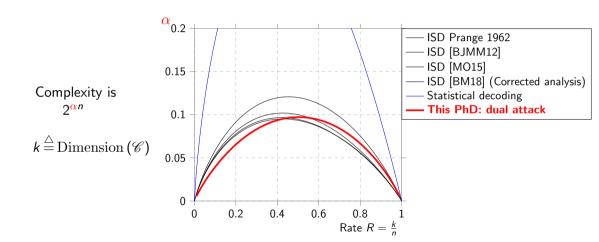
Our work:

- Show experimentally that these **Independence assumptions** do not always hold.
- Replace these Independence assumptions by a new Poisson Model.
- Eventually find a way to analyze these attacks without any assumptions.

Complexity of our best attack



Complexity of our best attack



- Introduction
 - Background
 - Code-Based Contribution
 - Lattice-Based Contribution
- 2 The first dual attack : Statistical Decoding
- 3 Our first attack : Reducing Decoding to LPN (RLPN)
- Our most advanced attack : doubleRLPN
- 5 A fully provable variant of our dual attacks
- 6 Lattices

State-of-the-art

Learning With Errors: Primal Attacks vs **Dual attacks**

Recently became competitive :

Guo & Johansson 2021 and Matzov 2022 attack on ${\bf Kyber}$

Analysis relies on standard independence assumption

Controversy:

Ducas & Pulles 2023 \rightarrow Independence assumption is flawed

"Does the Dual-Sieve Attack on Learning with Errors even Work?"

Lattice-based contribution

Our work:

Settling the controversy: A competitive dual attack can work as expected.

- Devise a slightly improved variant of Matzov dual attack
- Analyze : No Independence assumption but a new Model
- Dents the security of Kyber

Publications

Most of these results come from the following publications:

- [CDMT22]: K. Carrier, T. Debris-Alazard, J-P. Tillich. Asiacrypt 2022.
- [*MT*23] : J-P. Tillich. TCC 2023.
- [CDMT24]: K. Carrier, T. Debris-Alazard, J-P. Tillich. Eurocrypt 2024.
- [CMST25]: K. Carrier, Y. Shen, J-P. Tillich. Crypto 2025.

- Introduction
- The first dual attack : Statistical Decoding
 - Statistical decoding
 - Using a splitting strategy to improve the algorithm?
- 3 Our first attack : Reducing Decoding to LPN (RLPN)
- Our most advanced attack : doubleRLPN
- **5** A fully provable variant of our dual attacks
- 6 Lattices

Setting for Dual Attacks

Dual code:

$$\mathscr{C}^{\perp} = \{\mathbf{h} \in \mathbb{F}_q^n : \langle \mathbf{h}, \mathbf{c} \rangle = 0 \quad \forall \mathbf{c} \in \mathscr{C}\} \qquad \text{with} \qquad \langle \mathbf{x}, \mathbf{y} \rangle = \sum x_i \ y_i \pmod{q}$$

Compute dual vector $\mathbf{h} \in \mathscr{C}^{\perp}$

Observation:

Given
$$\mathbf{y} = \mathbf{c} + \mathbf{e}$$
 $\rightarrow \langle \mathbf{y} \rangle$

$$\rightarrow \langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{c} + \mathbf{e}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle$$

Key fact:

More biased toward 0 as $|\mathbf{e}|$, $|\mathbf{h}|$ smaller.

First dual attack: Statistical Decoding (Al-Jabri 2001)

Compute $\mathbf{h} \in \mathscr{C}^{\perp}$ of low weight $|\mathbf{h}| = w$ such that $\mathbf{h}_1 = 1$:

$$\langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle = \sum \mathbf{e}_i \mathbf{h}_i = \mathbf{e}_1 + \sum \mathbf{e}_i \mathbf{h}_i \sim \begin{cases} \text{Bernouilli}\left(\frac{1-\delta}{2}\right) & \text{if } \mathbf{e}_1 = 0 \\ \text{Bernouilli}\left(\frac{1+\delta}{2}\right) & \text{if } \mathbf{e}_1 = 1 \end{cases}$$

Compute N such dual vectors \rightarrow Decide with majority voting

How big must N be to make good decision?

Condition for statistical decoding to succeed

$$\langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle = \sum \mathbf{e}_i \mathbf{h}_i = \mathbf{e}_1 + \sum \mathbf{e}_i \mathbf{h}_i \sim \begin{cases} \text{Bernouilli}\left(\frac{1-\delta}{2}\right) & \text{if } \mathbf{e}_1 = 0 \\ \text{Bernouilli}\left(\frac{1+\delta}{2}\right) & \text{if } \mathbf{e}_1 = 1 \end{cases}$$

Supposing h is taken uniformly in \mathscr{C}^{\perp} of weight w such that $h_1 = 1$:

$$\operatorname{Bias}\left(\langle \mathbf{e}, \mathbf{h} \rangle\right) \stackrel{\triangle}{=} \mathbb{P}\left(\langle \mathbf{e}, \mathbf{h} \rangle = 0\right) - \mathbb{P}\left(\langle \mathbf{e}, \mathbf{h} \rangle = 1\right) = \pm \delta\left(\mathbf{w}\right)$$

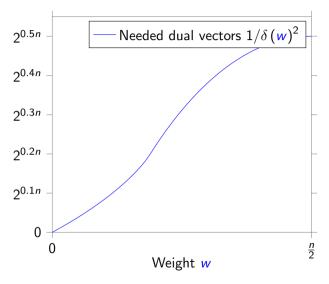
To make right decision, under assumption that the (y,h)'s are **independent**, N required to be

$$N > \frac{1}{\operatorname{Bias}(\langle \mathbf{e}, \mathbf{h} \rangle)^2}$$

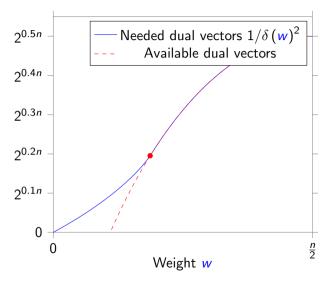
Condition

$$N > \frac{1}{\delta(w)^2}$$

Limiting factor in statistical decoding



Limiting factor in statistical decoding



- Introduction
- 2 The first dual attack : Statistical Decoding
 - Statistical decoding
 - Using a splitting strategy to improve the algorithm?
- 3 Our first attack : Reducing Decoding to LPN (RLPN)
- Our most advanced attack : doubleRLPN
- **5** A fully provable variant of our dual attacks
- 6 Lattices

A path toward improvement as an open question

Suggestion of Debris-Alazard & Tillich 2017:

 \rightarrow Compute dual vectors of low weight only on a subpart of the support ?

- Split support in complementary part \mathscr{P} and $\mathscr{N} \to \mathsf{Recover} \ \mathbf{e}_{\mathscr{P}}$?

$$\rightarrow \langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle = \langle \underbrace{\mathbf{e}_{\mathscr{P}}}, \mathbf{h}_{\mathscr{P}} \rangle + \underbrace{\langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle}_{\text{noise: biased to 0}} + \underbrace{\langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle}_{\text{noise: biased to 0}}$$

Intuition: improve this limiting factor by decreasing the noise.

Why is this so advantageous?

This strategy is highly beneficial (1)

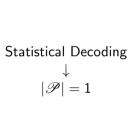
• Compute dual vector $\mathbf{h} = \underbrace{\begin{array}{c} w \text{ (small)} \\ y \text{ } \end{array}}_{\mathcal{N}}$

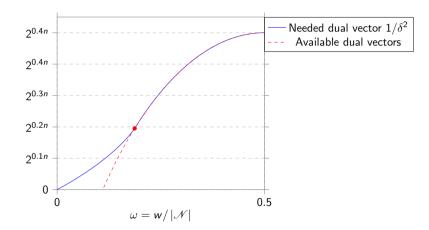
$$\rightarrow \langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle = \langle \underbrace{\mathbf{e}_{\mathscr{P}}}_{\text{secret}}, \underbrace{\mathbf{h}_{\mathscr{P}}}_{\text{noise: biased to 0}} + \underbrace{\langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle}_{\text{noise: biased to 0}}$$

Supposing Independence assumption

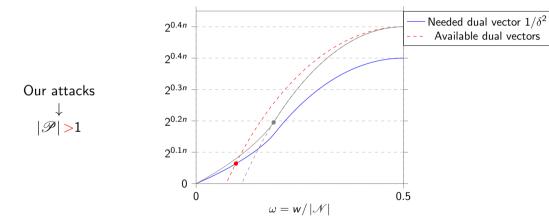
Number of dual vectors
$$N \ge \frac{1}{\text{bias}(\langle \mathbf{e}_{\mathcal{N}}, \mathbf{h}_{\mathcal{N}} \rangle)^2}$$
 \rightarrow Can recover secret $\mathbf{e}_{\mathscr{P}}$

This strategy is highly beneficial (2)





This strategy is highly beneficial (2)



Can we leverage it?

- Introduction
- 2 The first dual attack : Statistical Decoding
- Our first attack : Reducing Decoding to LPN (RLPN)
 - Reducing Decoding to LPN
 - LPN solver
 - The algorithm
 - Analysis with the Poisson model
 - Results
- Our most advanced attack : doubleRLPN
- **5** A fully provable variant of our dual attacks
- 6 Lattices

Reducing Decoding to LPN

• Compute dual vector $\mathbf{h} = \underbrace{ \begin{bmatrix} \mathbf{w} & \mathbf{w} \\ \mathbf{w} \end{bmatrix}}_{\mathcal{N}}$

$$\rightarrow \langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle = \langle \underbrace{\mathbf{e}_{\mathscr{P}}}_{\text{secret}}, \mathbf{h}_{\mathscr{P}} \rangle + \underbrace{\langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle}_{\text{noise: biased to 0}}$$

LPN Problem

- Input: Many samples $(a, \langle a, s \rangle + e)$
 - $\mathbf{s} \in \mathbb{F}_2^s$ fixed secret
 - ightharpoonup a taken at random in \mathbb{F}_2^s
 - ightharpoonup $e \sim \mathrm{Ber}(p)$
- Output: s

N dual vectors $\rightarrow N$ LPN samples

$$(\mathbf{a}, \langle \mathbf{s}, \mathbf{a} \rangle + e) \text{ w.t } \left\{ egin{array}{l} \mathbf{a} = \mathbf{h}_{\mathscr{P}} \in \mathbb{F}_{2}^{|\mathscr{P}|} \\ \mathbf{s} = \mathbf{e}_{\mathscr{P}} \\ e = \langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle \end{array} \right.$$

Recovering e p is solving an LPN problem

- Introduction
- 2 The first dual attack : Statistical Decoding
- Our first attack : Reducing Decoding to LPN (RLPN)
 - Reducing Decoding to LPN
 - LPN solver
 - The algorithm
 - Analysis with the Poisson model
 - Results
- Our most advanced attack : doubleRLPN
- **5** A fully provable variant of our dual attacks
- 6 Lattices

Score function

LPN sample
$$\langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}_{\mathscr{P}}, \mathbf{h}_{\mathscr{P}} \rangle + \langle \mathbf{h}_{\mathscr{N}}, \mathbf{e}_{\mathscr{N}} \rangle$$

Score function

For $\mathbf{x} \in \mathbb{F}_2^{|\mathscr{P}|}$ score function

$$\mathbf{F}(\mathbf{x}) \stackrel{\triangle}{=} \sum_{\mathbf{h} \in \mathscr{H}} (-1)^{\langle \mathbf{y}, \mathbf{h} \rangle - \langle \mathbf{x}, \mathbf{h}_{\mathscr{P}} \rangle}$$

where \mathcal{H} is set of N computed low weight dual vectors.

$$\langle \mathbf{y}, \mathbf{h} \rangle - \langle \mathbf{e}_{\mathscr{P}}, \mathbf{h}_{\mathscr{P}} \rangle = \langle \mathbf{h}_{\mathscr{N}}, \mathbf{e}_{\mathscr{N}} \rangle$$
 is biased toward $0 \to \mathbf{F}\left(\mathbf{e}_{\mathscr{P}}\right)$ Big

Goal of LPN solver

LPN Solver

Return set of candidates for the solution

$$\mathcal{S} \stackrel{\triangle}{=} \{ \ \mathbf{x} \in \mathbb{F}_2^{|\mathscr{P}|} \ : \ \mathbf{F}\left(\mathbf{x}\right) > \textcolor{red}{\mathcal{T}} \}$$

where
$$T \stackrel{\triangle}{=} \frac{1}{2} \mathbb{E} \left(\mathbf{F} \left(\mathbf{e}_{\mathscr{P}} \right) \right)$$

An FFT based LPN solver

We have computed N dual vectors \mathbf{h} . Compute for each $\mathbf{x} \in \mathbb{F}_2^{|\mathscr{S}|}$

$$\mathsf{F}(\mathsf{x}) \stackrel{\triangle}{=} \sum_{\mathsf{h}} (-1)^{\langle \mathsf{y}, \mathsf{h} \rangle - \langle \mathsf{x}, \mathsf{h}_{\mathscr{P}} \rangle}$$

Naive search

$$2^{|\mathscr{P}|} \times N$$

Levieil & Fouque 2006

Use a Fast Fourier Transform

$$|\mathscr{P}| 2^{|\mathscr{P}|} + N$$

 \rightarrow Exponential speed-up

Returns set of candidates $\mathcal{S} \stackrel{\triangle}{=} \{ \mathbf{x} \in \mathbb{F}_2^{|\mathscr{P}|} : \mathbf{F}(\mathbf{x}) > T \}$

- Introduction
- 2 The first dual attack : Statistical Decoding
- Our first attack : Reducing Decoding to LPN (RLPN)
 - Reducing Decoding to LPN
 - LPN solver
 - The algorithm
 - Analysis with the Poisson model
 - Results
- Our most advanced attack : doubleRLPN
- **5** A fully provable variant of our dual attacks
- 6 Lattices

Algorithm

```
Decode(n, k, t)
Input: \mathscr{C}, \mathbf{y} = \mathbf{c} + \mathbf{e}
Output: \mathbf{e}
Choose \mathscr{P} and \mathscr{N} at random
\mathscr{H} \leftarrow \text{Compute } N \text{ dual vectors of } \mathscr{C} \text{ such that } |\mathbf{h}_{\mathscr{N}}| = \mathbf{w} \qquad \triangleright \text{ Using technique from ISD}
\mathscr{S} \leftarrow \text{LPNSolver} \left( \ \left( (\mathbf{h}_{\mathscr{P}}, \langle \mathbf{y}, \mathbf{h} \rangle) \right)_{\mathbf{h} \in \mathscr{H}} \ \right) \qquad \triangleright \text{Small set of candidates for the secret } \mathbf{e}_{\mathscr{P}}
for \mathbf{x} \in \mathscr{S} \text{ do}
| \text{Decode}(\mathbf{n} - |\mathscr{P}|, \mathbf{k} - |\mathscr{P}|, \mathbf{t}') \triangleright \text{Check if } \mathbf{x} = \mathbf{e}_{\mathscr{P}} \text{ by solving a smaller decoding problem. If } \mathbf{x} = \mathbf{e}_{\mathscr{P}} \text{ this decoding succeed and returns } \mathbf{e}.
```

Complexity:

 $T_{\sf Compute \ Vectors} + T_{\sf LPN \ Solver} + T_{\sf Decode} imes |\mathcal{S}|$

- Introduction
- 2 The first dual attack : Statistical Decoding
- Our first attack : Reducing Decoding to LPN (RLPN)
 - Reducing Decoding to LPN
 - LPN solver
 - The algorithm
 - Analysis with the Poisson model
 - Results
- Our most advanced attack : doubleRLPN
- 5 A fully provable variant of our dual attacks
- 6 Lattices

Complexity

Complexity:

$$T_{\mathsf{Compute Vectors}} + T_{\mathsf{LPN Solver}} + T_{\mathsf{Decode}} imes |\mathcal{S}|$$

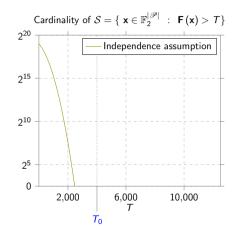
Goal: Prove that the last part is negligible for reasonable parameters.

Key study:

Tight bound of cardinalilty of $\mathcal{S} \stackrel{\triangle}{=} \{ \mathbf{x} \in \mathbb{F}_2^{|\mathscr{P}|} : \mathbf{F}(\mathbf{x}) > \mathbf{7} \}$

Difficulty $|\mathscr{P}| = \Theta(n) \to \text{Needs to understand the exponential tail behavior of } \mathbf{F}(\mathbf{x}).$

Number of false candidates in a perfect world



Independence Assumption:

The terms in $\mathbf{F}(\mathbf{x}) = \sum_{\mathbf{h} \in \mathscr{C}^{\perp}} (-1)^{\langle \mathbf{y}, \mathbf{h} \rangle - \langle \mathbf{x}, \mathbf{h}_{\mathscr{P}} \rangle} 1_{|\mathbf{h}_{\mathscr{N}}| = \mathbf{w}} \text{ are independent variables.}$

Under independence assumption if

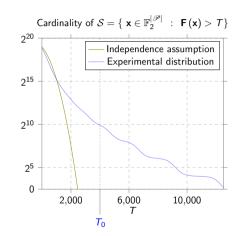
$$N > \frac{n}{\delta^2}$$

then taking
$$T_0 \stackrel{\triangle}{=} \frac{1}{2} \mathbb{E} \left(\mathbf{F} \left(\mathbf{e}_{\mathscr{P}} \right) \right)$$

$$\{ \mathbf{x} \in \mathbb{F}_2^{|\mathscr{P}|} : \mathbf{F}(\mathbf{x}) > T_0 \} = \{ \mathbf{e}_{\mathscr{P}} \}$$

Can distinguish $\mathbf{e}_{\mathscr{P}}$, no false candidate.

Number of false candidates in a perfect world



Independence Assumption

Independence Assumption:

The terms in

$$\mathbf{F}(\mathbf{x}) = \sum_{\mathbf{h} \in \mathscr{C}^{\perp}} (-1)^{\langle \mathbf{y}, \mathbf{h} \rangle - \langle \mathbf{x}, \mathbf{h}_{\mathscr{P}} \rangle} 1_{|\mathbf{h}_{\mathscr{N}}| = \mathbf{w}} \text{ are independent variables.}$$

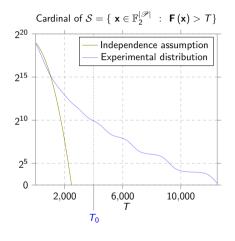
Under independence assumption if

$$N > \frac{n}{\delta^2}$$

then taking
$$T_0 \stackrel{\triangle}{=} \frac{1}{2} \mathbb{E} \left(\mathbf{F} \left(\mathbf{e}_{\mathscr{P}} \right) \right)$$

$$\{ \mathbf{x} \in \mathbb{F}_2^{|\mathscr{P}|} : \mathbf{F}(\mathbf{x}) > T_0 \} = \{ \mathbf{e}_{\mathscr{P}} \}$$

Can distinguish $e_{\mathcal{P}}$, no false candidate.

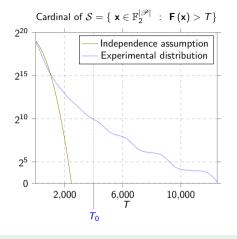


Theorem: Dual formula

$$F(\mathbf{x}) = \sum_{\mathbf{i} \in \mathbb{N}} N_{\mathbf{i}} \left(\mathscr{C}^{\mathscr{N}} + g(\mathbf{x}) \right) K_{\mathbf{w}}(\mathbf{i})$$

- $\mathscr{C}^{\mathcal{N}} \stackrel{\triangle}{=} \{ \mathbf{c}_{\mathcal{N}} : \mathbf{c} \in \mathscr{C} \text{ s.t } \mathbf{c}_{\mathscr{P}} = 0 \}$
- $N_{\mathbf{i}}(\mathcal{D})$ number word of weight \mathbf{i} of \mathcal{D}
- K_w Krawtchouk polynomial
- g(x) affine function

Proof: Poisson formula $+\widehat{1_w} = K_w$



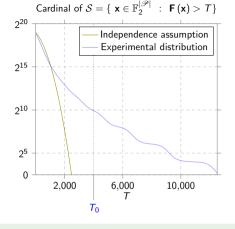
Theorem: Dual formula

$$F\left(\mathbf{x}\right) = \sum_{\mathbf{i} \in \mathbb{N}} N_{\mathbf{i}} \left(\mathscr{C}^{\mathscr{N}} + g(\mathbf{x})\right) K_{\mathbf{w}}(\mathbf{i})$$

- $\mathscr{C}^{\mathcal{N}} \stackrel{\triangle}{=} \{ \mathbf{c}_{\mathscr{N}} : \mathbf{c} \in \mathscr{C} \text{ s.t } \mathbf{c}_{\mathscr{P}} = 0 \}$
- $N_{\mathbf{i}}(\mathscr{D})$ number word of weight \mathbf{i} of \mathscr{D}
- K_w Krawtchouk polynomial
- g(x) affine function

Proof: Poisson formula $+ \widehat{1_w} = K_w$

Tight estimation of number of candidates $\Leftarrow \mathbb{P}\left(N_{i} - \mathbb{E}\left(N_{i}\right) > \operatorname{poly}\left(n\right)\sqrt{\mathbf{Var}N_{i}}\right) = 2^{-\Theta(n)}$



Theorem: Dual formula

$$F(\mathbf{x}) = \sum_{\mathbf{i} \in \mathbb{N}} N_{\mathbf{i}} \left(\mathscr{C}^{\mathscr{N}} + g(\mathbf{x}) \right) K_{\mathbf{w}}(\mathbf{i})$$

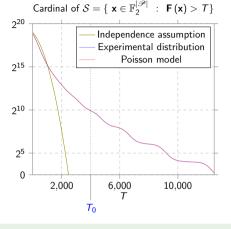
- $\mathscr{C}^{\mathscr{N}} \stackrel{\triangle}{=} \{ \mathbf{c}_{\mathscr{N}} : \mathbf{c} \in \mathscr{C} \text{ s.t } \mathbf{c}_{\mathscr{P}} = 0 \}$
- ullet $N_{\mathbf{i}}\left(\mathscr{D} \right)$ number word of weight \mathbf{i} of \mathscr{D}
- K_w Krawtchouk polynomial
- $g(\mathbf{x})$ affine function

Proof: Poisson formula $+ \widehat{1_w} = K_w$

Tight estimation of number of candidates
$$\Leftarrow \mathbb{P}\left(N_{i} - \mathbb{E}\left(N_{i}\right) > \operatorname{poly}\left(n\right)\sqrt{\mathbf{Var}N_{i}}\right) = 2^{-\Theta(n)}$$

Model:

 $N_i(\mathcal{D}) \sim \text{Poisson}$ variable of right expected value



Theorem: Dual formula

$$F(\mathbf{x}) = \sum_{\mathbf{i} \in \mathbb{N}} N_{\mathbf{i}} \left(\mathscr{C}^{\mathscr{N}} + g(\mathbf{x}) \right) K_{\mathbf{w}}(\mathbf{i})$$

- $\mathscr{C}^{\mathscr{N}} \stackrel{\triangle}{=} \{ \mathbf{c}_{\mathscr{N}} : \mathbf{c} \in \mathscr{C} \text{ s.t } \mathbf{c}_{\mathscr{P}} = 0 \}$
- ullet $N_{\mathbf{i}}\left(\mathscr{D} \right)$ number word of weight \mathbf{i} of \mathscr{D}
- K_w Krawtchouk polynomial
- g(x) affine function

Proof: Poisson formula + $\widehat{1_w} = K_w$

Tight estimation of number of candidates
$$\Leftarrow \mathbb{P}\left(N_{i} - \mathbb{E}\left(N_{i}\right) > \operatorname{poly}\left(n\right)\sqrt{\mathbf{Var}N_{i}}\right) = 2^{-\Theta(n)}$$

Model:

 $N_i(\mathcal{D}) \sim \text{Poisson}$ variable of right expected value

Number of false candidates

Theorem:

Under the Poisson Model when

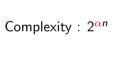
$$N > \frac{n^8}{\delta^2}$$

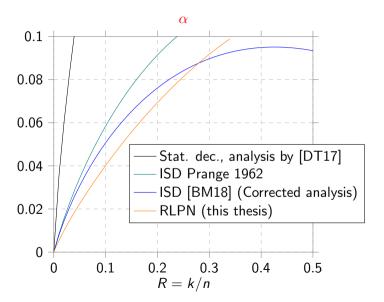
there are poly(n) false candidates.

 \rightarrow Overall cost of dealing with false candidates is negligible.

- Introduction
- 2 The first dual attack : Statistical Decoding
- Our first attack : Reducing Decoding to LPN (RLPN)
 - Reducing Decoding to LPN
 - LPN solver
 - The algorithm
 - Analysis with the Poisson model
 - Results
- Our most advanced attack : doubleRLPN
- **5** A fully provable variant of our dual attacks
- 6 Lattices

Results





- Introduction
- 2 The first dual attack : Statistical Decoding
- 3 Our first attack : Reducing Decoding to LPN (RLPN)
- Our most advanced attack : doubleRLPN
 - Reducing sparse LPN to plain LPN
 - Results
- **5** A fully provable variant of our dual attacks
- 6 Lattices

RLPN is not optimal

$$\langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}_{\mathscr{P}}, \mathbf{h}_{\mathscr{P}} \rangle + \langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle$$

N dual vectors $\rightarrow N$ LPN samples

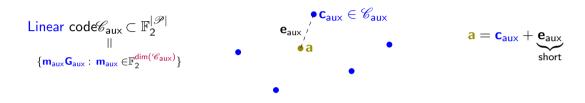
$$(\mathbf{a}, \langle \mathbf{s}, \mathbf{a} \rangle + e) \text{ w.t } \left\{ egin{array}{l} \mathbf{a} = \mathbf{h}_\mathscr{P} & \in \mathbb{F}_2^{|\mathscr{P}|} \\ \mathbf{s} = \mathbf{e}_\mathscr{P} \\ e = \langle \mathbf{e}_\mathscr{N}, \mathbf{h}_\mathscr{N} \rangle \end{array} \right.$$

Secret $\mathbf{e}_{\mathscr{P}}$ is sparse and yet FFT computes $F(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{F}_2^{|\mathscr{P}|}$

Reducing sparse LPN to plain LPN (1)

Reduction from sparse to plain LPN

→ Technique by Guo, Johansson, Löndahl (2014)



$$\langle \mathbf{s}, \mathbf{a} \rangle + e = \langle \mathbf{s}, \mathbf{c}_{\mathsf{aux}} \rangle + \underbrace{\langle \mathbf{s}, \mathbf{e}_{\mathsf{aux}} \rangle + e}_{e' \text{ new noise}}$$

$$\langle \mathbf{s}, \mathbf{c}_\mathsf{aux}
angle = \langle \mathbf{s}, \mathbf{m}_\mathsf{aux} \mathbf{G}_\mathsf{aux}
angle = \langle \mathbf{s} \mathbf{G}_\mathsf{aux}^ op, \mathbf{m}_\mathsf{aux}
angle$$

Sample space $\mathbb{F}_2^{|\mathscr{P}|} \to \mathbb{F}_2^{\dim(\mathscr{C}_{\mathsf{aux}})}$ is smaller!

The complete algorithm

DoubleRLPN

Same as RLPN but replace FFT LPN solver by Reduction + FFT

Number of false candidates in doubleRLPN

Theorem

Under the Poisson Model when

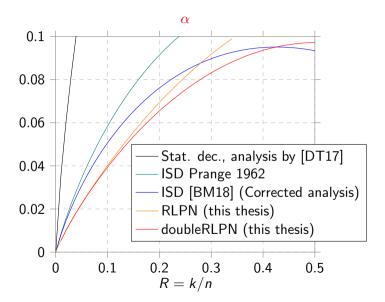
$$N > \frac{n^8}{\delta^2}$$

there are $2^{\beta n}$ false candidates. (instead of poly (n) in RLPN)

ightarrow Overall cost of dealing with false candidates is still negligible.

- Introduction
- 2 The first dual attack : Statistical Decoding
- 3 Our first attack : Reducing Decoding to LPN (RLPN)
- Our most advanced attack : doubleRLPN
 - Reducing sparse LPN to plain LPN
 - Results
- 5 A fully provable variant of our dual attacks
- 6 Lattices

Results



Complexity : $2^{\alpha n}$

Outperforms state-of-the-art for R < 0.42

- Introduction
- 2 The first dual attack : Statistical Decoding
- 3 Our first attack : Reducing Decoding to LPN (RLPN)
- Our most advanced attack : doubleRLPN
- **5** A fully provable variant of our dual attacks
 - General approach
 - Algorithm
- **6** Lattices

What was intractable before

Tight estimates
$$\mathbb{E}\left(\left|\left\{\mathbf{x}\in\mathbb{F}_{2}^{|\mathscr{S}|}\ :\ \mathbf{F}\left(\mathbf{x}\right)>\mathbf{7}\ \right\}\right|\right)$$

$$\uparrow$$
As $\left|\mathbb{F}_{2}^{|\mathscr{S}|}\right|=2^{\Theta(n)}$ needs **exponential tail behavior** of $\mathbf{F}\left(\mathbf{x}\right)$

$$\uparrow$$
Poisson model

However, we can prove:

Goal

Theorem

There exists an algorithm that has the same performance, up to polynomial factors, as (double)RLPN and that we can fully prove.

Make a new algorithm whose proof relies only on this proposition.

Approach

Approach:

Compute poly(n) score functions to recover $e_{\mathscr{P}}$ and $e_{\mathscr{N}}$

Making a guess:

- For each $\mathbf{x} \in \mathbb{F}_2^{\mathscr{P}}$ compute $\mathbf{g}(\mathbf{x})$, a guess for the value of $\mathbf{e}_{\mathscr{N}}$.
 - Property: when $\mathbf{x} = \mathbf{e}_{\mathscr{P}}$ then $\mathbf{g}(\mathbf{x}) = \mathbf{e}_{\mathscr{N}}$

+

Testing a guess:

For any x we can test if $x = e_{\mathscr{P}}$ and $g(x) = e_{\mathscr{N}}$ in polynomial time.

Observation

$$\mathbf{y}^{(i)} \stackrel{\triangle}{=} \begin{cases} \mathbf{y}_{\mathscr{P}}^{(i)} &= \mathbf{y}_{\mathscr{P}} \\ \mathbf{y}_{\mathscr{N}}^{(i)} &= \mathbf{y}_{\mathscr{N}} + \delta_{i} = \mathbf{c}_{\mathscr{N}} + \underbrace{(\mathbf{e}_{\mathscr{N}} + \delta_{i})}_{\mathsf{New Error}} \end{cases}$$

Noise of LPN sample $\langle \mathbf{y}^{(i)}, \mathbf{h} \rangle = \langle \mathbf{e}_{\mathscr{P}}, \mathbf{h}_{\mathscr{P}} \rangle + \langle \mathbf{e}_{\mathscr{N}} + \delta_i, \mathbf{h}_{\mathscr{N}} \rangle$ smaller if $\mathbf{e}_{\mathscr{N}} = 1$

$$\mathsf{F}_{i}\left(\mathsf{x}\right) = \sum_{\mathsf{h}} (-1)^{\left\langle \mathsf{y}^{(i)},\mathsf{h}\right\rangle - \left\langle \mathsf{x},\mathsf{h}_{\mathscr{P}}\right\rangle}$$

 \mathbf{F}_i is score when we flipped i'th bit of $\mathbf{y}_{\mathscr{N}}$

Main observation

If
$$(\mathbf{e}_{\mathscr{N}})_i = 1$$
 we expect $\mathbf{F}_i(\mathbf{e}_{\mathscr{P}}) > \mathbf{F}(\mathbf{e}_{\mathscr{P}})$

- Introduction
- 2 The first dual attack : Statistical Decoding
- 3 Our first attack : Reducing Decoding to LPN (RLPN)
- Our most advanced attack : doubleRLPN
- **5** A fully provable variant of our dual attacks
 - General approach
 - Algorithm
- 6 Lattices

Fully provable variant of RLPN

- Computing the score functions
 - ▶ Choose \mathscr{P} and \mathscr{N} at random
 - ▶ Compute *N* dual vectors of \mathscr{C} such that $|\mathbf{h}_{\mathscr{N}}| = \mathbf{w}$
 - \blacktriangleright Compute the score functions $\textbf{F}, \textbf{F}_1, \ \textbf{F}_2, \ \cdots, \ \textbf{F}_{|\mathcal{N}|}$ with an FFT
- For each $\mathbf{x} \in \mathbb{F}_2^{|\mathscr{P}|}$ make a guess $\mathbf{g}\left(\mathbf{x}\right) \in \mathbb{F}_2^{|\mathscr{N}|}$ for the value of $\mathbf{e}_\mathscr{N}$
 - ▶ For $i = 1, ..., |\mathcal{N}|$:

*
$$\mathbf{g}(\mathbf{x})_i \leftarrow \begin{cases} 1 & \text{If } \mathbf{F}_i(\mathbf{x}) > \mathbf{F}(\mathbf{x}) \\ 0 & \text{Else} \end{cases}$$

- For each $\mathbf{x} \in \mathbb{F}_2^{|\mathscr{P}|}$ test the guess $\mathbf{g}(\mathbf{x})$ and reconstruct \mathbf{e}
 - ▶ $\mathbf{e}_{\mathscr{P}} \leftarrow \mathbf{x}$ and $\mathbf{e}_{\mathscr{N}} \leftarrow \mathbf{g}(\mathbf{x})$
 - ▶ If |e| = t and $y e \in \mathscr{C}$ Then Return e

Complexity: same up to polynomial factor as RLPN

Analysis

Proposition:

If
$$N > \frac{\text{poly}(n)}{\delta^2}$$

then when $\mathbf{x} = \mathbf{e}_{\mathscr{P}}$ our guess on $\mathbf{e}_{\mathscr{N}}$ is good

Proof:

$$\operatorname{bias}\left(\langle \mathbf{e}_{\mathscr{N}} + \delta_{i}, \mathbf{h}_{\mathscr{N}} \rangle\right) - \underbrace{\operatorname{bias}\left(\langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle\right)}_{\delta} = \operatorname{poly}\left(n\right) \underbrace{\operatorname{bias}\left(\langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle\right)}_{\delta}$$

If
$$N > \frac{n^2}{s^2}$$
 then $F(e_{\mathscr{P}}) = N\delta(1 + o(1/n))$ with probability $1 - o(1/n)$

- Introduction
- 2 The first dual attack : Statistical Decoding
- 3 Our first attack : Reducing Decoding to LPN (RLPN)
- Our most advanced attack : doubleRLPN
- 5 A fully provable variant of our dual attacks
- 6 Lattices
 - Background
 - Results

LWE problem

LWE problem

• Input: $(G, y = c + e) \in \mathbb{Z}_q^{k \times n} \times \mathbb{Z}_q^n$ where $c \in \mathscr{C}$ and $e \sim \chi^n$

Output: e

Binary Decoding (Code)	Learning with Errors (Lattice)	
\mathbb{F}_2	\mathbb{Z}_q	
Small Hamming weight	amming weight Small Euclidean norm	

Dual attacks in lattice-based cryptography

Compute **small** (Euclidean norm) dual vectors of $\mathbf{h} \in \mathscr{C}^{\perp}$:

ightarrow By sampling short vectors in Euclidean lattice $\Lambda = \mathscr{C}^\perp + q \mathbb{Z}^n$

Key observation

$$\langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{c} + \mathbf{e}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle$$

is more biased toward small values of \mathbb{Z}_q as **e** and **h** small

Newer lattice-based dual attacks

Matzov 2022 uses same splitting strategy:

$$\langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}_\mathscr{P}, \mathbf{h}_\mathscr{P} \rangle + \langle \mathbf{e}_\mathscr{N}, \mathbf{h}_\mathscr{N} \rangle$$

Score function

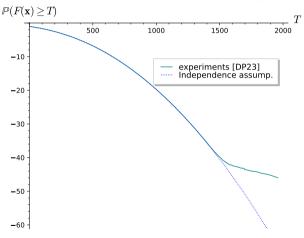
$$\mathbf{F}(\mathbf{x}) = \sum_{\mathbf{h} \in \mathscr{H}} \exp\left(rac{2i\pi}{q}\left(\langle \mathbf{y}, \mathbf{h}
angle - \langle \mathbf{x}, \mathbf{h}_{\mathscr{P}}
angle
ight)
ight)$$

Matzov 2022 uses Modulus Switching ($\mathbb{Z}_q \to \mathbb{Z}_p$) and then an FFT as a solver.

Attack of Guo & Johansson 2021 and Matzov 2022 on **Kyber** use standard **Independence assumption** in their analysis.

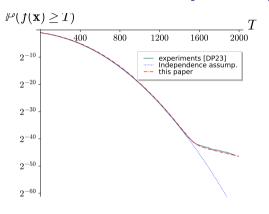
Flawed independence assumption

Ducas & Pulles 2023 \rightarrow Show independence assumption are invalid



Ducas & Pulles 2023 "Does the Dual-Sieve Attack on Learning with Errors even Work?"

Accurate score prediction [CDMT24]



Dual formula

If we could apply Poisson summation:

$$F(\mathbf{x}) \approx \sum_{i} N_{i}(\Lambda) \left(\frac{\mathbf{w}}{i}\right)^{n/2} J_{\frac{n}{2}}(2\pi \mathbf{w} i)$$

- $N_i(\Lambda)$ number of lattice points of length i
- J_n Bessel function, related to $\widehat{1_{\leq w}}$

Model: $F(\mathbf{x}) \sim \text{First term of the sum}$

Normal

 \rightarrow Concurrent work with Ducas & Pulles 2023.

Dual attack of [CMST25]: Variant of Matzov 2022

Same framework as our code-based dual attacks doubleRLPN.

LPN solver

Decoding technique on \mathbb{Z}_q instantiated with **Polar codes** + FFT

Using new model we show that it dents the security of Kyber

- Introduction
- 2 The first dual attack : Statistical Decoding
- 3 Our first attack : Reducing Decoding to LPN (RLPN)
- Our most advanced attack : doubleRLPN
- 5 A fully provable variant of our dual attacks
- 6 Lattices
 - Background
 - Results

Results

Lead to attack against Kyber (using the same complexity model as Matzov)

Scheme	Required security	Matzov 2022	Our attack (bits)
	by NIST (bits)		
Kyber-512	143	139.2	139.5
Kyber-768	207	196.1	195.1
Kyber-1024	272	262.4	259.7

Conclusion

In this thesis

- Code:
 - Significantly develop dual attacks
 - **b** Best dual attacks improve all previous decoders for codes of rate R < 0.42 at GV
 - New tools (Poisson Model) and tweaks to analyze dual attacks
- Lattice:
 - New tools to analyze dual attacks
 - ▶ New attack whose analysis is backed up by experimental evidences
 - Dents the security of Kyber

Futur work:

- Asymptotic complexity exponent when using more involved way of computing dual vectors
- Non-asymptotic complexity of the attack?
- Adapt these dual attacks against scheme like CROSS?
- Can we prove exponential bound for the weight enumerator of random linear code?