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Public-Key cryptography

Used for safe communication over insecure channel without pre-shared secret.

RSA, DH
↓

Hard computational problem
↑

Easily solved by quantum computer
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Post-Quantum (Public-Key) cryptography

Lattice, Code, Multivariate, Isogenies, ...

Code-based Lattice-based

Encryption HQC (NIST), McEliece,
Bike, ...

Kyber (NIST),...

Signature SDiTH,... Dilithium (NIST),...
Security Decoding problem Learning with Errors

→ Hard problem even for quantum computer

Complexity of best algorithms used to parametrize schemes.
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Binary Decoding Problem

Binary Linear code → C = { mG : m ∈ Fn
2}

Decoding at a small distance t:

Input: (G, y = c+ e) ∈ Fk×n
2 × Fn

2 where c ∈ C and |e| = t

Output: e such that |e| = t and y − e ∈ C
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Hardness of the decoding problem as a function of the distance
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Complexity : 2αn

Gilbert-Varshamov distance tGV is where the problem is hardest
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Complexity of some decoders

Complexity is 2αn

k
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Complexity of some decoders

Main family of algorithms for 60 years : Information Set Decoders (ISD)

An outlier, a Dual attack : Statistical decoding by Al-Jabri 2001

→ Debris-Alazard & Tillich 2017 shows that it is asymptotically not competitive.
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Code-Based Contribution of this thesis (1)

New dual attacks:

State-of-art : Code-based dual attacks are not competitive

Our work:

Significant improvement of statistical decoding by generalizing it.

Our best attack outperforms Information Set Decoders for a significant regime.

Analyzing dual attacks:

State-of-art : Analyze of dual attacks require the use of key Independence assumption

Our work:

Show experimentally that these Independence assumptions do not always hold.

Replace these Independence assumptions by a new Poisson Model.

Eventually find a way to analyze these attacks without any assumptions.
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Complexity of our best attack

Complexity is
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State-of-the-art
Learning With Errors : Primal Attacks vs Dual attacks

↓

Recently became competitive :

Guo & Johansson 2021 and Matzov 2022 attack on Kyber

Analysis relies on standard independence assumption

Controversy:

Ducas & Pulles 2023 → Independence assumption is flawed

”Does the Dual-Sieve Attack on Learning with Errors even Work?”
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Lattice-based contribution

Our work:

Settling the controversy : A competitive dual attack can work as expected.

↑

Devise a slightly improved variant of Matzov dual attack

Analyze : No Independence assumption but a new Model

Dents the security of Kyber

13 / 66



Publications

Most of these results come from the following publications:

[CDMT22] : K. Carrier, T. Debris-Alazard, J-P. Tillich. Asiacrypt 2022.

[MT23] : J-P. Tillich. TCC 2023.

[CDMT24] : K. Carrier, T. Debris-Alazard, J-P. Tillich. Eurocrypt 2024.

[CMST25] : K. Carrier, Y. Shen, J-P. Tillich. Crypto 2025.
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Setting for Dual Attacks

Dual code:

C⊥ = {h ∈ Fn
q : ⟨h, c⟩ = 0 ∀c ∈ C } with ⟨x, y⟩ =

∑
xi yi (mod q)

Compute dual vector h ∈ C⊥

Observation:

Given y = c+ e → ⟨y,h⟩ = ⟨c+ e,h⟩ = ⟨e,h⟩

Key fact:

More biased toward 0 as |e|, |h| smaller.
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First dual attack: Statistical Decoding (Al-Jabri 2001)

Compute h ∈ C⊥ of low weight |h| = w such that h1 = 1:

⟨y,h⟩ = ⟨e,h⟩ =
∑

eihi = e1 +
∑

eihi ∼

{
Bernouilli

(
1−δ
2

)
if e1 = 0

Bernouilli
(
1+δ
2

)
if e1 = 1

Compute N such dual vectors → Decide with majority voting

How big must N be to make good decision?
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Condition for statistical decoding to succeed

⟨y,h⟩ = ⟨e,h⟩ =
∑

eihi = e1 +
∑

eihi ∼

{
Bernouilli

(
1−δ
2

)
if e1 = 0

Bernouilli
(
1+δ
2

)
if e1 = 1

Supposing h is taken uniformly in C⊥ of weight w such that h1 = 1:

Bias (⟨e,h⟩) △
= P (⟨e,h⟩ = 0)− P (⟨e,h⟩ = 1) = ±δ (w)

To make right decision, under assumption that the ⟨y,h⟩’s are independent, N required to be

N >
1

Bias (⟨e,h⟩)2

Condition

N >
1

δ (w)2
18 / 66



Limiting factor in statistical decoding

0 n
2

0

20.1n

20.2n

20.3n

20.4n

20.5n

Weight w

Needed dual vectors 1/δ (w)2
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A path toward improvement as an open question
Suggestion of Debris-Alazard & Tillich 2017 :

→ Compute dual vectors of low weight only on a subpart of the support ?

• Split support in complementary part P and N → Recover eP?

• Compute dual vector h = w (small)

P N

→ ⟨y,h⟩ = ⟨e,h⟩ = ⟨ eP︸︷︷︸
secret

,hP⟩+ ⟨eN ,hN ⟩︸ ︷︷ ︸
noise: biased to 0

Intuition : improve this limiting factor by decreasing the noise.
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Why is this so advantageous?
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This strategy is highly beneficial (1)

• Compute dual vector h = w (small)

P N

→ ⟨y,h⟩ = ⟨e,h⟩ = ⟨ eP︸︷︷︸
secret

,hP⟩+ ⟨eN ,hN ⟩︸ ︷︷ ︸
noise: biased to 0

Supposing Independence assumption

Number of dual vectors N ≥ 1

bias (⟨eN ,hN ⟩)2
→ Can recover secret eP
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This strategy is highly beneficial (2)

Statistical Decoding
↓

|P| = 1

0 0.5
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ω = w/ |N |

Needed dual vector 1/δ2

Available dual vectors
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This strategy is highly beneficial (2)

Our attacks
↓

|P|>1
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Can we leverage it?
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Reducing Decoding to LPN

• Compute dual vector h = w (small)

P N

→ ⟨y,h⟩ = ⟨e,h⟩ = ⟨ eP︸︷︷︸
secret

,hP⟩+ ⟨eN ,hN ⟩︸ ︷︷ ︸
noise: biased to 0

LPN Problem

Input: Many samples (a, ⟨a, s⟩+ e)
▶ s ∈ Fs

2 fixed secret
▶ a taken at random in Fs

2
▶ e ∼ Ber (p)

Output: s

N dual vectors → N LPN samples

(a, ⟨s, a⟩+ e) w.t

 a = hP ∈ F|P|
2

s = eP

e = ⟨eN ,hN ⟩

Recovering eP is solving an LPN problem
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Score function

LPN sample ⟨y,h⟩ = ⟨eP ,hP⟩+ ⟨hN , eN ⟩

Score function

For x ∈ F|P|
2 score function

F (x)
△
=

∑
h∈H

(−1)⟨y,h⟩−⟨x,hP⟩

where H is set of N computed low weight dual vectors.

⟨y,h⟩ − ⟨eP ,hP⟩ = ⟨hN , eN ⟩ is biased toward 0→ F (eP) Big.
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Goal of LPN solver

LPN Solver

Return set of candidates for the solution

S △
={ x ∈ F|P|

2 : F (x) > T}

where T
△
= 1

2E (F (eP))
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An FFT based LPN solver
We have computed N dual vectors h. Compute for each x ∈ F|P|

2

F (x)
△
=
∑
h

(−1)⟨y,h⟩−⟨x,hP⟩

Naive search

2|P| × N

Levieil & Fouque 2006

Use a Fast Fourier Transform
|P| 2|P| + N

→ Exponential speed-up

Returns set of candidates S △
={ x ∈ F|P|

2 : F (x) > T}
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Algorithm

Decode(n, k, t)
Input : C , y = c+ e
Output : e
Choose P and N at random
H ← Compute N dual vectors of C such that |hN | = w ▷ Using technique from ISD
S ← LPNSolver

(
((hP , ⟨y,h⟩))h∈H

)
▷ Small set of candidates for the secret eP

for x ∈ S do
Decode(n − |P| , k − |P| , t ′) ▷ Check if x = eP by solving a smaller decoding prob-
lem. If x = eP this decoding succeed and returns e.

Complexity:

TCompute Vectors + TLPN Solver + TDecode × |S|
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Complexity

Complexity:

TCompute Vectors + TLPN Solver + TDecode × |S|

Goal : Prove that the last part is negligible for reasonable parameters.

Key study:

Tight bound of cardinalilty of S △
={ x ∈ F|P|

2 : F (x) > T}

Difficulty |P| = Θ(n) → Needs to understand the exponential tail behavior of F (x).
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Number of false candidates in a perfect world
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0

T0

T

Cardinality of S = { x ∈ F|P|
2 : F (x) > T}

Independence assumption

Independence Assumption:

The terms in
F (x) =

∑
h∈C⊥(−1)⟨y,h⟩−⟨x,hP⟩1|hN |=w are

independent variables.

Under independence assumption if

N >
n

δ2

then taking T0
△
= 1

2E (F (eP))

{ x ∈ F|P|
2 : F (x) > T0} = { eP}

Can distinguish eP , no false candidate.
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Number of false candidates

Theorem:

Under the Poisson Model when

N >
n8

δ2

there are poly (n) false candidates.

→ Overall cost of dealing with false candidates is negligible.
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Results

Complexity : 2αn
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RLPN is not optimal

⟨y,h⟩ = ⟨eP ,hP⟩+ ⟨eN ,hN ⟩

N dual vectors → N LPN samples

(a, ⟨s, a⟩+ e) w.t

 a = hP ∈ F|P|
2

s = eP

e = ⟨eN ,hN ⟩

Secret eP is sparse and yet FFT computes F (x) for all x ∈ F|P|
2
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Reducing sparse LPN to plain LPN (1)

General approach : dimension reduction

LPN sample :

 a∈

F|P|
2

, ⟨
sparse

↑
s , a⟩+ e

 Lower Dimension−−−−−−−−−−→
Increase Noise

 a′∈

F≤ |P|
2

, ⟨

uniform
↑
s′ , a′⟩+ e ′


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Reduction from sparse to plain LPN

→ Technique by Guo, Johansson, Löndahl (2014)

Linear codeCaux

=
{mauxGaux : maux ∈Fdim(Caux)

2 }

⊂ F|P|
2

caux ∈ Caux

a
eaux a = caux + eaux︸︷︷︸

short

⟨s, a⟩+ e = ⟨s, caux⟩+ ⟨s, eaux⟩+ e︸ ︷︷ ︸
e′ new noise

⟨s, caux⟩ = ⟨s,mauxGaux⟩ = ⟨sG⊤
aux,maux⟩

Sample space F|P|
2 → Fdim(Caux)

2 is smaller!
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The complete algorithm

DoubleRLPN

Same as RLPN but replace FFT LPN solver by Reduction + FFT
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Number of false candidates in doubleRLPN

Theorem

Under the Poisson Model when

N >
n8

δ2

there are 2βn false candidates. (instead of poly (n) in RLPN)

→ Overall cost of dealing with false candidates is still negligible.
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Results
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Complexity : 2αn

Outperforms
state-of-the-art for

R < 0.42
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What was intractable before

RLPN

Tight estimates E
(∣∣∣{x ∈ F|P|

2 : F (x) > T }
∣∣∣)

↑
As

∣∣∣F|P|
2

∣∣∣ = 2Θ(n) needs exponential tail behavior of F (x)

↑
Poisson model

However, we can prove:

Proposition [CDMT22]

If N >
n2

δ2
then F (eP) = Nδ(1 + o(1/n)) with probability 1− o(1/n)
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Goal

Theorem

There exists an algorithm that has the same performance, up to polynomial factors, as
(double)RLPN and that we can fully prove.

↓

Make a new algorithm whose proof relies only on this proposition.
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Approach

Approach :

Compute poly (n) score functions to recover eP and eN

Making a guess:

For each x ∈ FP
2 compute g (x), a guess for the value of eN .

▶ Property: when x = eP then g (x) = eN

+

Testing a guess:

For any x we can test if x = eP and g (x) = eN in polynomial time.
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Observation

y(i)
△
=


y
(i)
P = yP

y
(i)
N = yN + δi = cN + (eN + δi )︸ ︷︷ ︸

New Error

Noise of LPN sample
〈
y(i),h

〉
= ⟨eP ,hP⟩+ ⟨eN + δi ,hN ⟩ smaller if eN = 1

Fi (x) =
∑
h

(−1)⟨y(i),h⟩−⟨x,hP⟩

Fi is score when we flipped i ’th bit of yN

Main observation

If (eN )i = 1 we expect Fi (eP) > F (eP)
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Fully provable variant of RLPN

Computing the score functions
▶ Choose P and N at random
▶ Compute N dual vectors of C such that |hN | = w
▶ Compute the score functions F,F1, F2, · · · , F|N | with an FFT

For each x ∈ F|P|
2 make a guess g (x) ∈ F|N |

2 for the value of eN
▶ For i = 1, ..., |N | :

⋆ g (x)i ←

{
1 If Fi (x) > F (x)

0 Else

For each x ∈ F|P|
2 test the guess g (x) and reconstruct e

▶ eP ← x and eN ← g (x)
▶ If |e| = t and y − e ∈ C Then Return e

Complexity : same up to polynomial factor as RLPN
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Analysis

Proposition:

If N >
poly (n)

δ2
then when x = eP our guess on eN is good

Proof :

bias (⟨eN + δi ,hN ⟩)− bias (⟨eN ,hN ⟩)︸ ︷︷ ︸
δ

= poly (n) bias (⟨eN ,hN ⟩)︸ ︷︷ ︸
δ

+

If N >
n2

δ2
then F (eP) = Nδ(1 + o(1/n)) with probability 1− o(1/n)
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LWE problem

LWE problem

Input: (G, y = c+ e) ∈ Zk×n
q × Zn

q where c ∈ C and e ∼ χn

Output: e

Binary Decoding (Code) Learning with Errors (Lattice)

F2 Zq

Small Hamming weight Small Euclidean norm

58 / 66



Dual attacks in lattice-based cryptography

Compute small (Euclidean norm) dual vectors of h ∈ C⊥:

→ By sampling short vectors in Euclidean lattice Λ = C⊥ + qZn

Key observation

⟨y,h⟩ = ⟨c+ e,h⟩ = ⟨e,h⟩

is more biased toward small values of Zq as e and h small
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Newer lattice-based dual attacks

Matzov 2022 uses same splitting strategy:

⟨y,h⟩ = ⟨eP ,hP⟩+ ⟨eN ,hN ⟩

Score function

F (x) =
∑
h∈H

exp

(
2iπ

q
(⟨y,h⟩ − ⟨x,hP⟩)

)

Matzov 2022 uses Modulus Switching (Zq → Zp) and then an FFT as a solver.

Attack of Guo & Johansson 2021 and Matzov 2022 on Kyber use standard Independence
assumption in their analysis.
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Flawed independence assumption

Ducas & Pulles 2023 → Show independence assumption are invalid

500 1000 1500 2000
T

60

50

40

30

20

10

(F(x)≥ T)

experiments [DP23]
Independence assump.

Ducas & Pulles 2023 ”Does the Dual-Sieve Attack on Learning with Errors even Work?”
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Accurate score prediction [CDMT24]

400 800 1200 1600 2000
T

2−10

2−20

2−30

2−40

2−50

2−60

(f(x)≥ T)

experiments [DP23]
Independence assump.
this paper

Dual formula

If we could apply Poisson summation:

F (x) ≈
∑
i

Ni (Λ)
(w
i

)n/2
J n

2
(2π w i)

Ni (Λ) number of lattice points of length i

Jn Bessel function, related to 1̂≤w

Model: F (x) ∼ First term of the sum + Normal

→ Concurrent work with Ducas & Pulles 2023.
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Dual attack of [CMST25] : Variant of Matzov 2022

Same framework as our code-based dual attacks doubleRLPN.

LPN solver

Decoding technique on Zq instantiated with Polar codes + FFT

↓

Using new model we show that it dents the security of Kyber
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Results

Lead to attack against Kyber (using the same complexity model as Matzov)

Scheme Required security
by NIST (bits)

Matzov 2022 Our attack (bits)

Kyber-512 143 139.2 139.5

Kyber-768 207 196.1 195.1

Kyber-1024 272 262.4 259.7
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Conclusion

In this thesis

Code:
▶ Significantly develop dual attacks
▶ Best dual attacks improve all previous decoders for codes of rate R < 0.42 at GV
▶ New tools (Poisson Model) and tweaks to analyze dual attacks

Lattice:
▶ New tools to analyze dual attacks
▶ New attack whose analysis is backed up by experimental evidences
▶ Dents the security of Kyber

Futur work:

Asymptotic complexity exponent when using more involved way of computing dual vectors

Non-asymptotic complexity of the attack?

Adapt these dual attacks against scheme like CROSS?

Can we prove exponential bound for the weight enumerator of random linear code?
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