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@ Introduction
@ Background

© The first dual attack : Statistical Decoding

© Our first attack : Reducing Decoding to LPN (RLPN)
@ Our most advanced attack : doubleRLPN

© A fully provable variant of our dual attacks

@ Lattices
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Public-Key cryptography

Used for safe communication over insecure channel without pre-shared secret.

Bob

Hello
Alice!

Alice's
public key
6EB69570
0BE03CE4
Alice
\i
Hello
. Decrypt
Alice! Alice's
private key

RSA, DH
!

Hard computational problem

/]\

Easily solved by quantum computer
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Post-Quantum (Public-Key) cryptography

Lattice, Code, Multivariate, Isogenies, ... )
Code-based Lattice-based
Encryption HQC (NIST), McEliece, Kyber (NIST),...
Bike, ...
Signature SDiTH,... Dilithium (NIST),...
Security Decoding problem Learning with Errors

— Hard problem even for quantum computer

Complexity of best algorithms used to parametrize schemes. J

4 /66



Post-Quantum (Public-Key) cryptography

Lattice, Code, Multivariate, Isogenies, ... )
Code-based Lattice-based
Encryption HQC (NIST), McEliece, Kyber (NIST),...
Bike, ...
Signature SDiTH,... Dilithium (NIST),...
Security Decoding problem Learning with Errors

— Hard problem even for quantum computer

Complexity of best algorithms used to parametrize schemes. )

4 /66



Binary Decoding Problem

Binary Linear code — % ={mG : meFj}

Decoding at a small distance t:
o Input: (G,y=c+e)cFs" x F] where c € € and |e| = t
@ Output: esuchthat|e|=tandy—ec @
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Hardness of the decoding problem as a function of the distance

Complexity : 27"
0
0
t
tev
Gilbert-Varshamov distance tgy is where the problem is hardest J

6/ 66



Complexity of some decoders

«

0.2
——ISD Prange 1962
0.15 - i
Complexity is 24" o1l |
A, .
k = Dimension (%) 0.05 | -
0 T T T T

0 0.2 0.4 0.6 0.8 1
Rate R = %
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Complexity of some decoders

Main family of algorithms for 60 years : Information Set Decoders (ISD) J
%02
——ISD Prange 1962
—ISD [BJMM12]
0.15 ——ISD [MO15]
——1SD [BM18] (Corrected analysis)

Complexity is 24" 01l |

k £ Dimension (%) 0.05 - -

0 0.2 0.4 0.6 0.8 1
Rate R = %
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Complexity of some decoders
Main family of algorithms for 60 years : Information Set Decoders (ISD) J

An outlier, a Dual attack : Statistical decoding by Al-Jabri 2001

— Debris-Alazard & Tillich 2017 shows that it is asymptotically not competitive.

«

0.2
——ISD Prange 1962
—1SD [BJMM12]
0.15 —1SD [MO15]
——1SD [BM18] (Corrected analysis)
o —— Statistical decoding, analysis by [DT17
Complexity is 2" o - & analysts by [DT1T]
A, .
k = Dimension (¢) 0.05 | -
0 T T T T

0 0.2 0.4 0.6 0.8 1
Rate R = %
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@ Introduction

@ Code-Based Contribution

© The first dual attack : Statistical Decoding

© Our first attack : Reducing Decoding to LPN (RLPN)
@ Our most advanced attack : doubleRLPN

© A fully provable variant of our dual attacks

@ Lattices
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Code-Based Contribution of this thesis (1)
New dual attacks:
State-of-art : Code-based dual attacks are not competitive

Our work:
e Significant improvement of statistical decoding by generalizing it.

@ Our best attack outperforms Information Set Decoders for a significant regime.

Analyzing dual attacks:

State-of-art : Analyze of dual attacks require the use of key Independence assumption
Our work:

@ Show experimentally that these Independence assumptions do not always hold.
@ Replace these Independence assumptions by a new Poisson Model.

@ Eventually find a way to analyze these attacks without any assumptions.
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Complexity of our best attack

0.2
0.15 -
Complexity is
20" 01
A . .
k = Dimension (%)
0.05 -

——ISD Prange 1962

—1SD [BJMM12]

—1SD [MO15]

——ISD [BM18] (Corrected analysis)
—— Statistical decoding

0.2

0.4

0.6

0.8
Rate R = %

10 / 66



Complexity of our best attack
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@ Introduction

@ Lattice-Based Contribution
© The first dual attack : Statistical Decoding
© Our first attack : Reducing Decoding to LPN (RLPN)
@ Our most advanced attack : doubleRLPN
© A fully provable variant of our dual attacks

@ Lattices
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State-of-the-art
Learning With Errors : Primal Attacks vs Dual attacks

!

Recently became competitive :

Guo & Johansson 2021 and Matzov 2022 attack on Kyber

Analysis relies on standard independence assumption J

Controversy:
Ducas & Pulles 2023 — Independence assumption is flawed

”Does the Dual-Sieve Attack on Learning with Errors even Work?”
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Lattice-based contribution

Our work:
Settling the controversy : A competitive dual attack can work as expected.

/]\

@ Devise a slightly improved variant of Matzov dual attack
o Analyze : No Independence assumption but a new Model

o Dents the security of Kyber
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Publications

Most of these results come from the following publications:

e [CDMT22] : K. Carrier, T. Debris-Alazard, J-P. Tillich. Asiacrypt 2022.
o [MT23] : J-P. Tillich. TCC 2023.
e [CDMT24] : K. Carrier, T. Debris-Alazard, J-P. Tillich. Eurocrypt 2024.

e [CMST25] : K. Carrier, Y. Shen, J-P. Tillich. Crypto 2025.
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© Introduction

© The first dual attack : Statistical Decoding
@ Statistical decoding

© Our first attack : Reducing Decoding to LPN (RLPN)
@ Our most advanced attack : doubleRLPN

© A fully provable variant of our dual attacks

Q@ Lattices
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Setting for Dual Attacks

Dual code: J

¢+ ={heF]: (h,c)=0 Vce%} with x,y)=Yxy; (mod q)

Compute dual vector h € €+

Observation:
Giveny=c+e — (y,h) = (c+e,h) = (e,h)

Key fact:

More biased toward O as |e|, |h| smaller.
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First dual attack: Statistical Decoding (Al-Jabri 2001)

Compute h € €+ of low weight |h| = w such that hy = 1:

76 1 pumy
<Y7 Ze hl —=e;+ Z €e; h {BernOUIlh ( ié‘) If “

Bernouilli (T) ifeg =1

Compute N such dual vectors — Decide with majority voting

How big must NV be to make good decision? J
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Condition for statistical decoding to succeed

Bernouilli (1—_‘5) if e =
h) = h) = ihi = ihi ~ 2
{y,h)=(e,h) =) "ehi=e1+> e {Bemouﬂh (L2)  ife =1

Supposing h is taken uniformly in €1 of weight w such that hy = 1:

Bias((e,h)) 2 P({e,h)=0)—P((e,h)=1) = =+5(w)

To make right decision, under assumption that the (y, h)'s are independent, N required to be

1

N> s ()

v

Condition

5 (w)?




Limiting factor in statistical decoding

00.5n | — Needed dual vectors 1/5(W)2 -

20.4n - L

20.3n - L

20.2n 4 L

20.1n - L

o
NI

Weight w
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Limiting factor in statistical decoding

2050 —— Needed dual vectors 1/<5(W)2
R Available dual vectors

T
[

20.4n - L

20.3n - L

20.2n - L

20.1n 4 / L

o
NI

Weight w
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© Introduction

© The first dual attack : Statistical Decoding

@ Using a splitting strategy to improve the algorithm?
© Our first attack : Reducing Decoding to LPN (RLPN)
@ Our most advanced attack : doubleRLPN
© A fully provable variant of our dual attacks

Q@ Lattices
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A path toward improvement as an open question
Suggestion of Debris-Alazard & Tillich 2017 :

— Compute dual vectors of low weight only on a subpart of the support ?

e Split support in complementary part & and .4 — Recover e »?

////////////////////

w (small)

& N

— <ya h> = <ea h) = <%a h,/’> a4 <e,,/Va h_,1/>

secret noise: biased to 0

Intuition : improve this limiting factor by decreasing the noise.
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Why is this so advantageous?
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This strategy is highly beneficial (1)

e Compute dual vector h = [7777777770077700077) w (small) |
S N
- <ya h> = <ea h> = < €z ah,/’> + <e,,/Va h '1/>
secret noise: biased to 0
Supposing Independence assumption
1
Number of dual vectors N > — Can recover secret e »

bias ((e_s, h_))?
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This strategy is highly beneficial (2)

Statistical Decoding

1
2| =1

20.4n 4

20A4n 4

20.3n -

20.2n 4

20.1n ,

—— Needed dual vector 1/62

-~ Available dual vectors

w=w/|¥]

0.5
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This strategy is highly beneficial (2)

Our attacks

1
| 2| >1

20.4n 4

20A4n 4

20.3n -

20.2n 4

20.1n ,

|~ Needed dual vector 1/§2
--- Available dual vectors

w=w/|¥]

0.5
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Can we leverage it?
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@ Introduction
© The first dual attack : Statistical Decoding

© Our first attack : Reducing Decoding to LPN (RLPN)
@ Reducing Decoding to LPN

@ Our most advanced attack : doubleRLPN
© A fully provable variant of our dual attacks

Q@ Lattices
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Reducing Decoding to LPN

e Compute dual vector h =}

w (small)

— (y,h) = (e,h) = <&ia;, ho)+ (ey,h )

LPN Problem
e Input: Many samples (a, (a,s) + e)
s € I3 fixed secret

a taken at random in 3
e ~ Ber(p)

@ Output: s

V.

secret noise: biased to 0

N dual vectors — N LPN samples

a=h, eFy

(a,(s,a) +e)wt{ s=eyp
€= <e-/V7 h1>

Recovering e is solving an LPN problem
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@ Introduction
© The first dual attack : Statistical Decoding

© Our first attack : Reducing Decoding to LPN (RLPN)

@ LPN solver

@ Our most advanced attack : doubleRLPN
© A fully provable variant of our dual attacks

Q@ Lattices
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Score function

LPN sample (y, h) = (e, h ) + (h /e,

Score function

P ,
For x € IF|2 | score function

F(x)2 3 (~1)d=oher)

hest

where 7 is set of N computed low weight dual vectors.

(y,h) — (ex,hp) = (h y,e ) is biased toward 0 — F (e »)

Big.
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Goal of LPN solver

LPN Solver

Return set of candidates for the solution

SE{xeF . Fx)> T}
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An FFT based LPN solver

We have computed N dual vectors h. Compute for each x € Fg@\

F(x)2 3 (1))

h
Naive search
2021« N
Levieil & Fouque 2006
Use a Fast Fourier Transform
2271 + N

— Exponential speed-up

Returns set of candidates S é{ X € ]F'z‘gzl F(x)>T}
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@ Introduction
© The first dual attack : Statistical Decoding

© Our first attack : Reducing Decoding to LPN (RLPN)

@ The algorithm

@ Our most advanced attack : doubleRLPN
© A fully provable variant of our dual attacks

Q@ Lattices
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Algorithm

Decode(n, k, t)
Input: ¢, y=c+e

Output : e

Choose & and .4 at random

A < Compute N dual vectors of € such that |h y| = w > Using technique from ISD
S« LPNSolver (- ((h, (v,))herr ) > Small set of candidates for the secret e
for x € S do

L DECODE(n — | 2|, k — | 22|, t') > Check if x = e by solving a smaller decoding prob-
lem. If x = e this decoding succeed and returns e.

Complexity:
TCompute Vectors + 7—LPN Solver T+ TDecode X ‘S| J
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@ Introduction
© The first dual attack : Statistical Decoding

© Our first attack : Reducing Decoding to LPN (RLPN)

@ Analysis with the Poisson model

@ Our most advanced attack : doubleRLPN
© A fully provable variant of our dual attacks

Q@ Lattices

34 / 66



Complexity

Complexity:
TCompute Vectors T 7_LPN Solver T 7_Decode X |S’ J

Goal : Prove that the last part is negligible for reasonable parameters.

Key study:
Tight bound of cardinalilty of Sé{ X € IE‘|2"@| : F(x)> T} J

Difficulty |Z?| = © (n) — Needs to understand the exponential tail behavior of F (x).
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Number of false candidates in a perfect world

Independence Assumption:

Cardinality of S = { x e F}”| : F(x) > T} The terms in
220 ‘ : : = —1){yh—=(xhz)
‘— Independence assumption ‘ F (X) Zhe(gl_( 1) 1|h=/V‘:W are
independent variables.
215, \\\ L
Under independence assumption if
210 - r n
\ N > 52
254 ‘ [ . A q
. then taking To = 5E (F (e »))
2,000 6,000 10,000 2
T : _ )
To {XE]F2 : F(X)>T0}—{ey}

Can distinguish e, no false candidate.
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Number of false candidates in a perfect world

220

Cardinality of S = { x € F‘gﬂ‘
L

c F(x)> T}

215 4

210 4

25,

—— Independence assumption
—— Experimental distribution

T T T
2,000 ‘ 6,000 10,000
T

To

Independence-Assumption

Independence Assumption:

The terms in
F(x) = Zhe%l(—1)<y’h>_<x’h9>1|hﬂ\:w are
independent variables.

Under independence assumption if

n

N > 5
. A

then taking To = 5E (F (e »))

{(xeFY : F(x)> To} ={ e}

Can distinguish e, no false candidate.
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Prediction of the number of false candidates

Cardinal of S = { x € ]FE% s F(x)>T}

2% ‘ : — Theorem : Dual formula
—— Independence assumption
—— Experimental distribution
A , Fx) =Y M (67 + g(x) Kuli)
iEN
0 | N | 06" ={cy : c€e¥Cstcp=0}
N @ N;(Z) number word of weight i of Z
AN
5 . | e K,, Krawtchouk polynomial
0 “\‘ | o @ g (x) affine function
2,000 6,000 10,000 — ’
T Proof: Poisson formula + 1,, = K,

To
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Prediction of the number of false candidates

Cardinal of S = { x € ]Flfﬁ‘ s F(x)>T}

2% ‘ : — Theorem : Dual formula
A —— Independence assumption
' —— Experimental distribution .

A\ , Fo) =M (¢ +2(x) Kuli)

ieN

\ \\\ '/VA .
510 N | 0 ¢ ={cy : c€ECstcyp=0}

N o N;(Z) number word of weight i of
\
»5 ‘ | o K,, Krawtchouk polynomial
0 A | o e g (x) affine function
2,000 6,000 10,000 e ’
. T Proof: Poisson formula + 1,, = K,,

Tight estimation of number of candidates < P (N; — E (N;) > poly (n) v/Varh;) = =) J
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Prediction of the number of false candidates
Cardinal ofS:{xelFlzm : F(x)> T}

2% ‘ : — Theorem : Dual formula
—— Independence assumption
\ —— Experimental distribution
\ N 4
AN , Fo) =3 M (% +8(x) Ku(i)
ieN
\ N\ A
o VN | e ¢ " ={cy : ceFstcyp =0}
“ Y @ N;(2) number word of weight i of 2
25 . N | o K,, Krawtchouk polynomial
0 \ T @ g (x) affine function
2,000 6,000 10,000 e ‘
To T Proof: Poisson formula + 1,, = K,,

Tight estimation of number of candidates < P (N; — E (\;) > poly (n) v/Varh) = 2-©(") J

Model: N; (2) ~ Poisson variable of right expected value J
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Prediction of the number of false candidates
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Number of false candidates

Theorem:
Under the Poisson Model when

there are poly (n) false candidates.

— Overall cost of dealing with false candidates is negligible.
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@ Introduction
© The first dual attack : Statistical Decoding

© Our first attack : Reducing Decoding to LPN (RLPN)

@ Results
@ Our most advanced attack : doubleRLPN
© A fully provable variant of our dual attacks

Q@ Lattices
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Results

«

0.1 : :

/)\

0.08 - B

0.06 B

Complexity : 2" 0.04 —— Stat. dec., analysis by [DT17]
‘ ——ISD Prange 1962
——1ISD [BM18] (Corrected analysis)
0.02 - RLPN (this thesis)

0 [ [

I I
0 0.1 0.2 0.3 0.4 0.5
R=k/n
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© Introduction
© The first dual attack : Statistical Decoding
© Our first attack : Reducing Decoding to LPN (RLPN)

@ Our most advanced attack : doubleRLPN
@ Reducing sparse LPN to plain LPN

© A fully provable variant of our dual attacks

Q@ Lattices
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RLPN is not optimal

(y,h) =(ez,hz)+ (e y,h )

N dual vectors — N LPN samples
a=hy, cF,
(a,(s,a) +e)wt{ s=eyp
€= <eJV7 h4/>

Secret e is sparse and yet FFT computes F(x) for all x € IF'?'
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Reducing sparse LPN to plain LPN (1)

General approach : dimension reduction

LPN sample :

sparse

p
a,(s,a)+e
m

ed

Lower Dimension
%

Increase Noise

uniform
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Reduction from sparse to plain LPN
— Technique by Guo, Johansson, Londahl (2014)

. .caux E %UX
Linear code@,ux C IF|29| !

eaux// a = Caux + €aux
|| ° éa [} N~
{mauxGaux D Maux ngim(%aUX)} short
°
°
<S, a> G <S, Caux> + <57 eaux> +e
————
e’ new noise
— _ T
<Sacaux> = <57 mauxGaux> = <5Gaux7 maux> J
P dim(%- .
Sample space IE“z N qum( =) is smaller!
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The complete algorithm

DoubleRLPN
Same as RLPN but replace FFT LPN solver by Reduction + FFT J
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Number of false candidates in doubleRLPN

Theorem
Under the Poisson Model when

there are 27" false candidates. (instead of poly (n) in RLPN)

— Overall cost of dealing with false candidates is still negligible.
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© Introduction
© The first dual attack : Statistical Decoding
© Our first attack : Reducing Decoding to LPN (RLPN)

@ Our most advanced attack : doubleRLPN

@ Results
© A fully provable variant of our dual attacks

Q@ Lattices
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Results

a
0.1
0.08 - B
0.06 - | Complexity : 29"
| —— Stat. dec., analysis by [DT17]

0.04 ——1SD Prange 1962 Outperforms
——ISD [BM18] (Corrected analysis) state-of-the-art for

0.02 RLPN (this thesis) R <042
——doubleRLPN (this thesis)

[
O [ I [

I I
0 0.1 0.2 0.3 0.4 0.5
R=k/n
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© Introduction

© The first dual attack : Statistical Decoding

© Our first attack : Reducing Decoding to LPN (RLPN)
@ Our most advanced attack : doubleRLPN

© A fully provable variant of our dual attacks
@ General approach

Q@ Lattices
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What was intractable before
RLPN

Tight estimates E (‘{x € ]F'zgz' s F(x)>T }D

/]\

As ‘F'f" = 29(") needs exponential tail behavior of F (x)

/l\

Poisson model

However, we can prove:

Proposition [CDMT22]

n2

If N>52

then F(e»)= Nd§(1+o(1/n)) with probability 1— o(1/n)
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Goal

Theorem

There exists an algorithm that has the same performance, up to polynomial factors, as
(double)RLPN and that we can fully prove.

Make a new algorithm whose proof relies only on this proposition. )
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Approach

Approach :

Compute poly (n) score functions to recover e » and e

Making a guess:

o For each x € 5 compute g (x), a guess for the value of e ;.
Property: when x = e then g (x) = e 4

_l’_

Testing a guess:
For any x we can test if x = e and g(x) = e 4 in polynomial time. J
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Observation

» =Yz
o=y tdi=cy (e +0)
~—_——

New Error

Noise of LPN sample {(y(),h) = (e, h ) + (e + di,h 4 ) smallerife y =1

Fi(x) = Y (~1)b o)
h
F; is score when we flipped i'th bit of y 4

Main observation

If (e.s); =1 we expect F; (es) > F(ex)
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© Introduction

© The first dual attack : Statistical Decoding

© Our first attack : Reducing Decoding to LPN (RLPN)
@ Our most advanced attack : doubleRLPN

© A fully provable variant of our dual attacks

o Algorithm

Q@ Lattices
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Fully provable variant of RLPN

@ Computing the score functions
» Choose & and .4 at random
» Compute N dual vectors of ¢ such that |hy| = w
» Compute the score functions F,Fy, F», --- | F| 4| with an FFT

@ For each x € ]F'z‘@' make a guess g (x) € IFE/V' for the value of e
» Fori=1,.. |A4]:

N AL

@ For each x € ]F'z’@l test the guess g (x) and reconstruct e
» ep < xand ey < g(x)
» If el =t and y — e € ¥ Then Return e

Complexity : same up to polynomial factor as RLPN )
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Analysis

Proposition:
|
If N > pogz(n) then when x = e our guess on e 4 is good
Proof :
bias ((e s + d;,h.s)) — bias ({e s, h_y)) = poly (n) bias ((e_, hs))
ki ki
_|_

2

If N> % then F(e»)= Ni(1+ o(1/n)) with probability 1— o(1/n) J
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© Introduction

© The first dual attack : Statistical Decoding

© Our first attack : Reducing Decoding to LPN (RLPN)
@ Our most advanced attack : doubleRLPN

© A fully provable variant of our dual attacks

@ Lattices
@ Background
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LWE problem

LWE problem

o Input: (G,y=c+e) e Z" x Z] where c € ¢ and e ~ x"

o Output: e

Binary Decoding (Code)

Learning with Errors (Lattice)

>

Zq

Small Hamming weight

Small Euclidean norm
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Dual attacks in lattice-based cryptography

Compute small (Euclidean norm) dual vectors of h € €

— By sampling short vectors in Euclidean lattice A = €+ + qZ"

Key observation

{y,h) = {(c+ e, h) = (e, h)

is more biased toward small values of Z,; as e and h small
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Newer lattice-based dual attacks
Matzov 2022 uses same splitting strategy:

<y7h> = <e<@ahﬁﬂ> + <e,/V7h</V>

Score function

F) = 3 o0 (27 (1.0~ (o))

hes?

Matzov 2022 uses Modulus Switching (Zq — Zp) and then an FFT as a solver.

Attack of Guo & Johansson 2021 and Matzov 2022 on Kyber use standard Independence
assumption in their analysis. J
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Flawed independence assumption

Ducas & Pulles 2023 — Show independence assumption are invalid

P(F) =) .

1000 1500 2000

~104
— experiments [DP23]
~~~~~~~ Independence assump.

-204

-30

—404

—50

—60

Ducas & Pulles 2023 " Does the Dual-Sieve Attack on Learning with Errors even Work?"
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Accurate score prediction [CDMT24|

PUx) 2 1) T
400 800 1200 1600 2000 Dual formula
27 — eriments [0P23] If we could apply Poisson summation:
—— this paper
- pap
-30 w n/2 .
2 Fx)~ > N (A) (7) Jz (2m w i)
9—10 i
2 @ N; (A) number of lattice points of length i
279 @ J, Bessel function, related to l/g\w
Model: F (x) ~ First term of the sum +  Normal J

— Concurrent work with Ducas & Pulles 2023.
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Dual attack of [CMST25] : Variant of Matzov 2022

Same framework as our code-based dual attacks doubleRLPN.

LPN solver
Decoding technique on Zg instantiated with Polar codes + FFT J

!

Using new model we show that it dents the security of Kyber
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© Introduction

© The first dual attack : Statistical Decoding

© Our first attack : Reducing Decoding to LPN (RLPN)
@ Our most advanced attack : doubleRLPN

© A fully provable variant of our dual attacks

@ Lattices

@ Results
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Results

Lead to attack against Kyber (using the same complexity model as Matzov)

Scheme Required security | Matzov 2022 Our attack (bits)
by NIST (bits)

KYBER-512 143 139.2 139.5

KYBER-768 207 196.1 195.1

KYBER-1024 272 262.4 259.7
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Conclusion

In this thesis
o Code:

» Significantly develop dual attacks
» Best dual attacks improve all previous decoders for codes of rate R < 0.42 at GV
» New tools (Poisson Model) and tweaks to analyze dual attacks

o Lattice:

» New tools to analyze dual attacks
» New attack whose analysis is backed up by experimental evidences
» Dents the security of Kyber

Futur work:
@ Asymptotic complexity exponent when using more involved way of computing dual vectors
@ Non-asymptotic complexity of the attack?
@ Adapt these dual attacks against scheme like CROSS?
°

Can we prove exponential bound for the weight enumerator of random linear code?
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